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Abstract. We describe and investigate new tests for testing the 
validity of a semiparametric random-design linear regression model. 
The tests were introduced in Inglot and Ledwina (2006a, b). We repeat 
here basic steps of the constructions. Thc resulting statistics are closely 
linked to some norms of the appropriate efficient score vector and 
related quantities. A useful way of deriving the efticient score vector is 
proposed and discussed. We introduce also a large class of estimators 
of the eficient score vector and prove that under the null model our 
constructions are asymptotically distribution free. The proof adopts 
and exploits some ideas and results developed in the area of semipa- 
rametric estimation. We give also the limiting distribution of the test 
statistics under the null hypothesis. The simulation results contained in 
Inglot and Ledwina (2006a, b) show the very good performance of the 
proposed tests. 
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1. MTRODUCTZON 

The problem of verifying the linear structure of a regression function is 
central in applied statistics. Therefore, it is not surprising that there is extensive 
literature on several possible solutions under a variety of different restrictions, 
Some of the solutions are briefly discussed in Section 2 below. For further 
references, mostly focused on the fixed design set-up, see Hart (1997). 

In Inglot and Ledwina (2006b) we proposed some new tests of fit for the 
following problem. 

Let Z = (X, Y) denote a random vector in I x R, I = [0, 11. The null 
hypothesis H ,  asserts 
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where X and E are independent, EE = 0, EE" m, P E R4 is a vector of unknown 
real-valued parameters, v ( x )  = (vl (x), . . . , v, (x)) is a vector of known functions. 
The symbol denotes transposition. All vectors are considered as row vectors. 

We started with the classical idea of overfitting and reduced the verifica- 
tion of (1.1) to testing whether extra terms are significant. More precisely, given 
a fixed k, we embedded our null model (1.1) into the auxiliary model 

which satisfies the following assumptions: 
- 

u ( x )  = (ul ( x ) ,  . . . , uk (x)), v (x) = (ul (x), . . ., v, (x)), x E I, and the mea- 
surable functions u,, . .., u,, v , ,  . . ., v, are bounded and linearly in- 
dependent; 

d E Rk, j? E R4 are unknown parameters; 

{MI) X has an unknown density g with respect to the Lebesgue measure 
A supported on I; 

E has an unknown density f with respect to the Lebesgue measure 
IE on R; the density f satisfies Ef E = 0, z = ES e2 and 0 < z < co; 
X and e are independent. 

At the first step we constructed appropriate score test statistic, for the fixed 
k, for testing H,(k) :  8 = 0 against 8 # 0 in m(k) satisfying ( M I )  and some 
further regularity conditions ( M 2 )  and ( M 3 ) .  An efficient score vector along 
with its appropriate estimator play the central role in this construction. Sec- 
tion 6 of the present paper briefly introduces our approach to a derivation of 
efficient scores. This section may be of independent interest. The next step was 
incorporating into this statistic a score-based selection rule for determining the 
dimension k. The both steps are repeated in Section 3. Section 3 contains also 
formulation of our basic asymptotic results. This section is preceded by Sec- 
tion 2 containing motivation for the proposed construction, related discussion 
and some references to existing solutions of the considered problem. Section 4 
contains a proof of the crucial result on the asymptotic behaviour of the 
estimate of the efficient score vector under the null model (1.1). In Section 5 we 
discuss various aspects of our general assumptions. Small sample behaviour of 
the introduced tests is discussed in Inglot and Ledwina (2006b). 

2. MOTIVATION OF THE APPROACH 

The first rigorous approach to defining and constructing tests which are 
asymptotically optimal was by Neyman (1937). Roughly speaking, the paper 
introduced an asymptotically locally most powerful test of fit to a completely 
specified null distribution. The resulting solution was called the smooth test 



Data-driven tests for linear regression 43 

and can be seen to be a standard score statistic (under the set-up considered by 
Neyman). Note that this score statistic is simply the EucIidean norm of the 
score vector. In 1959 Neyman successfully extended this idea to cover the case 
of testing a parametric hypothesis in the case where some Euclidean nuisance 
parameters are present (cf. also Neyman (1954) and Le Cam (1956) for some 
preliminary results and their improvements). The key elements of Neyman's 
asymptotically locally optimal solutions (1954, 1959) were residual scores cal- 
culated as the residuals from projections (derived under the null hypothesis) of 
scores for the parameters of interest onto scores for the nuisance parameters. 
Nowadays the residuals are called efficient scores. Neyman's resulting statistic 
is some norm of the efficient score vector. 

In the thirties other goodness-of-fit statistics for a completely specified null 
distribution were introduced. CramCr-von Mises and Kolmogorov-Smirnov 
proposals are prominent examples. In contrast to Neyman's solution, these 
statistics were based mainly on intuition, as being measures of distance between 
theoretical and empirical distributions. Goodness-of-fit testing was dominated 
by soIutions of this kind for decades. This remark applies also to goodness-of- 
fit tests for semiparametric regression in the case of random X. In particular, 
Stute (1997) and Stute et aI. (1998a, b) developed some Cramer-von Mises type 
tests. Some simplified variants of such statistics were proposed by Diebolt and 
Zuber (2000). Koenker and Xiao (2002) as well as Khmaladze and Koul(2004) 
studied Kolmogorov-Smirnov type tests. Kozek (1991), Hardle and Mammen 
(1993), Sirnonoff and Tsai (1999) and many others proposed to measure a dis- 
tance between parametric and nonparametric estimators. Horowitz and Spo- 
koiny (2001) refined such an approach by using data driven choice of a smooth- 
ing parameter. Recently, an alternative construction based on nonparametric 
smoothing methods and penalization was introduced by Guerre and Lavergne 
(2005). Roughly speaking, these solutions rely on the not entirely justified belief 
that good estimators produce sensitive tests. The papers by Cox et al. (1988), 
Azzalini and Bowman (1993), Aerts et al. (2000), Fan and Huang (2001) and 
Baraud et al. (2003) were exceptions to the mainstream. In these articles the 
starting point for test construction were some ideas related to testing theory. 
These five papers deal with the case of fixed design. Last two additionally 
assume that the errors are Gaussian. The study of Dette (2000) extended the 
solution of Azzalini and Bowman (1993) to the case of random design. For 
some comparison of few of these solutions with adequate data-driven score test 
see Inglot and Ledwina (2006~~  2006e). 

Returning to Neyman's approach, it should be noted that smooth tests 
rose little interest for many years, while nowadays Neyman's 1937 paper is 
considered to be ingenious (cf. Le Cam and Lehmann (1974), p. ix). Renewed 
interest in this solution and its 1959 extension, related to goodness-of-fit prob- 
lems, was observed after publishing the paper by Thomas and Pierce (1979) 
and accelerated by the book of Rayner and Best (1989). It should also be 
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noted that the theory and applications elaborated there concerned good- 
ness-of-fit testing in the case where some Euclidean nuisance parameters are 
present. The resulting solutions were also called smooth tests. A justification for 
the name was provided by Javitz (19751, who showed that Neyman's tests are 
simply eficient score tests for some natural parametric family. 

However, it was increasingly clear that the practical application of smooth 
tests to goodness-of-fit problems should be accompanied by careful selection of 
the number of components in the test statistic. In the case of a fully specified 
null distribution, solutions of this kind were proposed by Eubank et al. (19931, 
Ledwina (1994), Fan (1996), Aerts et al. (2000), tb mention a few. In particular, 
the construction introduced in Ledwina (1994) is closely related to the original 
idea of Neyman (19371, as it provides an asymptotically locally most powerful 
test for a large class of nonparametric alternatives (for some evidence see e.g. 
Inglot and Ledwina (1996) and Inglot and Ledwina (2001a)). The solution relies 
on using Neyman's smooth test with the number of components defined by 
Schwarz selection rule. The case of testing goodness-of-fit when some Euc- 
lidean nuisance parameters are present was solved also in a similar way (cf. 
Inglot el al. (1997) and Inglot and Ledwina (2001b))). The aim of this article is to 
apply a suitable counterpart of Neyman's solution, along with the data-driven 
choice of the number of components incorporated in order to construct test of 
fit for the model (1.1). 

It should be said that the last few decades have been a period of vigorous 
development of semiparametric estimation theory. Efficient scores also play 
central role in it. An important idea of applying results derived in semiparamet- 
ric estimation, in order to construct some score tests in the case where func- 
tional nuisance parameters are present, has been considered in Choi (1989) and 
Choi et al. (1996). See also Bickel et al. (1998) for an alternative approach. In 
order to link our solution more clearly to these important contributions, we 
shall use the name score test instead of smooth test. Moreover, note that the 
name score test is an abbreviation of a more suitable name: efJicient score test. 
Finally, let us recall that the primary importance of efficient score tests lies in 
the fact that, under the null model, the influence of the nuisance parameters on 
the null distribution is asymptotically negligible. The second advantage of 
efficient score tests is that they are locally optimal solutions. 

In the context presented above, it is quite obvious that the paper by Choi 
et al. (1996) was stimulating to us. On the other hand, it seems to be a difficult 
task to follow the outline and suggestions sketched in Section 7 of that paper to 
someone not experienced in the details and particular concerns of techniques of 
eficient estimation. The guidelines given in that paper are very rough and a lot 
of work is needed to adapt them to a working solution in some particular 
application. For some further discussion on this point see Remark 5 of Section 4 
of the present paper. Anyway, the idea turns out to be worthy of this effort. To 
extract, among other things, the essence of the technicalities which are 
needed in constructing a test, we decided to rederive some results on efficient 
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scores stated in the literature and to present a minimal set of readable assump- 
tions under which these results are valid in our set-up. In particular, by embed- 
ding the underlying probability model into a related abstract setting, we manage 
to clearly separate purely analytical work, such as differentiation and projec- 
tions, from probabilistic arguments. We comment on this approach in Sec- 
tion 6. It seems that this may be of independent interest. Moreover, we propose 
an estimator of the efficient score vector and provide a detailed proof that its 
limiting null distribution is independent of the nuisance parameters. In this 
proof we used some well-established ideas, as well as a very useful recent result 
of Schick (2001). - 

Having constructed an appropriate score statistic, we define a score-based 
selection rule, which mimics the Schwarz criterion in the application consid- 
ered. We also propose a refinement of this selection rule, which combines the 
advantages of the Schwarz and Akaike criteria. These two ingredients, the 
score statistic and the selection rule for the number of components in the score 
statistic, lead to the final solution - a data-driven score lest, which is presen- 
ted in Section 3. The simulation results given in Inglot and Ledwina (2006b) 
show that these data-driven constructions have two fundamental advantages of 
efficient score statistics. Namely, for moderate sample sizes the critical values 
are stable for a variety of nuisance parameters, while empirical powers are high, 
considerably dominating those of the best existing solutions in the area. 

Though the present paper concentrates on one particular issue, it is ob- 
vious that a similar approach can be adopted and elaborated for many other 
semiparametric and nonparametric testing problems. 

3. DATA-DRIVEN SCORE TESTS 

Before we introduce the test statistics, we present a series of auxiliary 
constructions and results, as developed in Inglot and Ledwina (2006b). 

3.1. Efficient score vector for testing 8 = 0 in !JJI(k). A general result for 
score vectors in some large class of regression models is stated in Schick (1997). 
As mentioned in Section 2, we reproved some existing results on score vectors 
in the model Illl(k) and derived an efficient score vector for testing (1.1). The 
calculations for %JI(k), as well as in the more general heteroscedastic case, are 
given in Inglot and Ledwina (2003). In the sequel we quote some of these results. 

In the case under consideration, in addition to the basic model assump- 
tions (MI) we needed the following ones: 

(M2) f'(y) exists for all y~ R and 
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Under these three assumptions the efficient score vector for testing H o  (k): 
0 = 0 in %U(k), calculated at z = ( x ,  y) ,  is of the form 

where 
m,=E,u(X), r n 2 = E , v ( X ) ,  m=(ml,rn2)r 

while M and V are blocks in 

Note that, due to ( M 3 ) ,  Wis positive definite (cf. Remark C.13 in Inglot and 
Ledwina (2003)). 

3.2. Efficient score statistic and a general result. We introduce the addi- 
tional notation 

9=(&,Jf), r=(P,a)  and l * ( z ; r ) = l * ( z ) .  

Moreover, P",enotes the joint distribution of Z,, ..., Z ,  under the null 
model ( 1 . 1 ) .  

Finally, set 

and define 

From <MI)-<M3) ,  Corollaries C.16, C.18 and Remark C.13 of Inglot and 
Ledwina (2003), e.g., under the null hypothesis H ,  fk), L is positive definite and 
it follows that 

where 2: denotes a random variable having the central chi-square distribution 
with k degrees of freedom. 
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Consider 

where f* (-; 4) is an estimator of I* (*; g), while is an estimator of L. 
Finally, let )).)I denote the Euclidean norm of a given vector, while the 

symbol /\ stands for the statement: for every .. The relation (3.5) and a simple 

argument yield the following result. 

PROPOSITION 1. Let the null hypothesis H o ( k ) :  0 = 0 be true and the as- 
sumptions {MI}, { M 2 )  and ( M 3 )  be juljilled. Suppose that is a consistent 
estimator of L and the estimator F (.; 4) satisfies the following condition: 

Than for the test statistic Wk($ defined in (3.6) it foEIows that 

Remark  1. W, (d)  is an efficient score statistic for testing H ,  (k) in !Ui (k ) .  
As said before, we shall abbreviate this name to score statistic. Choi et al. (1996) 
used the name efficient. test statistic for such a construction. 

3.3. Some class of estimators P of I* satisfying (3.7). We followed some 
well-established ideas in the area of semiparametric estimation. On one hand, 
our construction is obviously linked to the approach of Bickel (1982), Exam- 
ple 3. On the other hand, our solution incorporates the very useful contribution 
of Schick (1986) showing that using only a smaIl fraction of the sample to 
estimate the score function, as proposed in Bickel (1982), can be avoided. 

Suppose Z , ,  .. ., Z, are i.i.d. vectors obeying (1.2). Note that, as usual in 
score test theory, alI considerations below are done under the assumption 8 = 0. 

Take 5 = tn /2 ]  and divide Z1, . . ., Z, into two parts: Z , ,  ..., Zi and 
Z , , , ,  . . ., Z, .  In order to clearly show an important feature of our construc- 
tion, we shall, for a moment, display in formulas the expectation rn as if it 
were the next nuisance parameter. Additionally, set (1) = (1, . . ., c), 
( 2 )  = (1 + 1, . . . , n). The superscript (j), j = 1, 2, appearing below, indicates 
from which part of the sample we estimate the related quantity. 

The basic structure of f* at the observed points Z1, . . ., Z, is as follows: 

where 
1 

~ t 1 )  = - 1 
1 C u (Xi), ?fiy, = - 

i s< l>  
C v (Xi), 5 ie<l> 

4 - PAMS 26.1 
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while &' is a discretized version of a &-consistent estimator (jV) of 8, based 
on the jth part of the sample. 

The specific form of mo together with the fact that in the construction of F 
only the estimators &( j )  are matched to Zi with i from G) guarantee that the 
important property (4.7) holds (cf. also the discussion of the p r o 3  in Section 4). 
Moreover, the requirements for &-consistency of an estimator for fl, its di- 
scretization and the specific form of Pirw are the strongest requirements on 
estimators we imposed in the construction. When estimating other quantities, 
there is a lot of freedom, as seen from Theorem I below. 

To write explicitly the form of the estimators f* (2,; q), i E ( j ) ,  j = 1, 2, 
denote by PG1, ?li), ?(I1 > 0 - ax., and [ fr/ f]'" the related estimators of 
the appropriate quantities. Note that having these estimators, we do not need 
to estimate the density g itself. We also introduce auxiliary functions 2'7, 
j = 1, 2, defined as follows: 

set (z;  f l )  = - ' ~ f  '/ f ~ ' ~ '  ( y  - u ( x )  ~3 [ l"'(x)-  P ( x )  [P2'] - l  n3(2)] 

1 i l ) - ~ $ l )  ~p211-1 Mf2)  
+ ; j i i l ~ - v ( x ) 8 T 1  Lfil I?  

(3.9) 
9; ( z ;  8) = -'[ f '1 f ] ( ' )  ( y  - v (x) f l T )  [ ~ x ' ~ '  ( x )  - v " ( ~ )  ( x )  [ P ( l ) ]  - 1 

Finally, set 

9 ( Z  ) for i E (I), f* (Z , ;  q )  = 
diaa (Zi; B',") for i E (2). 

THEOREM 1. Suppose that under the null distribution P; for j = 1 ;  2 the 
following holds: are ,,,&-consistent estimators of 8, while .2", Po' and 
are consistent estimators of z, V and M ,  respectively. Moreover, assume that the 
estimators [f'/ f Iu', j  = 1 ,  2, of f'/ f are consistent in the L2-norm, i.e. 

Then the estimator f* of E* dejned in (3.10) satisfies the condition (3.7) of 
Proposition 1 .  



Data-driven tests for linear regression 49 

Remark  2. Theorem 1 shows that there is a lot of flexibility in choosing 
estimators defining f*. In Inglot and Ledwina (2006a, b) we proposed and 
discussed a particular choice and in Inglot and Ledwina (2006a) we proved that 
under this choice the assumptions of Theorem 1 are satisfied. The flexibility in 
choosing estimators is an attractive feature of the approach. It permits refine- 
ments of our relatively simple implementation by using some more fine choices, 
which are briefly discussed in Inglot and Ledwina (2006a). 

3.4. Determining k in Wk(fj) by some score-based selection rules. We now 
consider a nested family of auxiliary models Wi (k), k = 1, . . . , d, where d is fixed 
but otherwise arbitrary. Following the construction proposed in Ledwina 
(1994), as e.g, in Kallenberg and Ledwina (1997), we defied score-based seIec- 
tion rule S1 as follows: 

S1 = mint1 < k G d: Wk(9)-klogn 2 W,(rj)-slogn, s = 1, ..., d}. 

The rule Sl mimics the Schwarz BIC criterion. Since the penalty slogn is 
relatively heavy, S1 is well suited to detect low-dimensional models m(k). In 
contrast, the ruIe 

imitating the Akaike AIC criterion, is expected to work well when high-dimen- 
sional disturbances !Dl (k) of the null mode1 (0) : Y = f l  [v ( (XIIT  + E, are pres- 
ent. Based on our experience and some previous articles, the following "inter- 
mediate" solution was proposed and discussed in Inglot and Ledwina (2006d). 
Use A1 when the distribution of the data at hand is very distinct from the null 
model and S1 otherwise. To provide a threshold defining which rule should be 
applied, we propose looking at the magnitude of the estimated standardized 
components of the efficient score vector. More precisely, in the present set-up, 
under the assumptions and notation of Proposition 1, set 

Then, obviously, W, (ij) = (I(g,, . . ., gk)1I2. Following the discussion presented 
in Inglot and Ledwina (2006d), we propose using the following penalty in this 
problem: 

(3.12) 
slogn if m a x l ~ , 6 r  lYtl < JG, 

K ( S ,  n, c) = 
if maxi tsd lqtl > +"=, 

where c is some fixed positive number. This strategy leads to the following 
refined selection rule: 

T1 = min(1 < k < d :  Wk(#)-zfk, n, c)  > W,(rj)-n(s, n, c), s = 1,  ..., d } .  
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It is evident that small c's result in TI being in practice equivalent to Al, while 
large c's lead to T1 being very similar to Sl. "Moderate" values of c give 
a meaningful "switching effect". 

For n 2 8, S1 < T1 < Al.  Moreover, since under the null model 

we have 

On the other hand, under Ho,  for any s € 1 2 ,  . .., d ) ,  

Hence, Proposition 1 yields 

PROPOS~ION 2. Under the null hypothesis Ho : Y = [V (XI]" + E ,  the 
assumptions of Proposition 1 and n + oo, it follows that 

and 

P; (T l> l ) - tO ,  WTl(t)%x:. 

Remark  3. We shall call Wsl ( r j )  and WT1 (q) data-driven score statistics 
for testing the validity of (1.1). Obviously, more general selection rules could be 
considered and incorporated into constructing data-driven score statistics. 
However, as emphasized in Remark 2, our primary goal was to propose a prac- 
tical solution. Therefore, we reduced the technical scope of the paper to the 
minimum. 

Remark  4. The simulation results reported in Inglot and Ledwina 
(2006a, b) show that the critical values of new data-driven score statistics are 
very stable for large variety of cases. Anyway, it should be said that the simu- 
lated critical values of our solutions are usually slightly larger than the limiting 
values. This is a characteristic phenomenon for data-driven tests, which was 
discussed in detail in some earlier papers. We would like to recall the basic 
reason for this phenomenon. Namely, in some small percentage of cases the 
selection rules take values greater than 1, which makes the test statistic stochas- 
tically larger than the limiting ~4 random variable. For some classical testing 
problems we developed nicely working approximations, which can be used to 
estimate p-values. For some evidence see e.g. Kallenberg and Ledwina (1995, 
1997). In the present set-up, to provide a practical and automatic way of 
generating critical values, one can apply the residual bootstrap, described e.g. 
on pp. 142-143 of Stute et al. (1998a). We implemented this procedure in our 
simulation study and found that it works well. 
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4. PROOF OF THEOREM 1 

Obviously, it is enough to show (3.7) for i E ( j ) ,  j = 1, 2. Therefore, we 
shall restrict attention to the case j = 1 and prove that 

1 
(4.1) /, P: - 1 1  [f* (Z , ;  q)-i* (2,; q)]ll 2 6 )  - 0 as n + m. 

To facilitate reading, recall that 3 = (&, f i) and q = (fl, 8) and concisely 
denote the estimate of 9 by $. We also introduce the class 3 (8) of deterministic 

- 
sequences {b,), b, E R4, such that & (b, - /3) stays bounded. 

The proof consists of four basic steps. 

The discretization allows us to replace checking (4.1) by proving that for 
any {b,) E W (8) it follows that 

0 From Schick's (2001) results we infer that for any {b,} 

and therefore, to prove (4.2), it is enough to show that for any (b , )  E 98 (8) and 
fl = (B,  9) 

The contiguity of {Pya,,,) and {Pl(bnYg,), where (b,) E a (j?), allows us to 
replace (4.4) by 

Checking (4.5) is simplified by introducing some conditioning related to 
the sample splitting scheme. Under this conditioning, the structure of the 
model and the choice of estimators are exploited. In particular, the structure of 
the model with the shift v(Xi) b,T, as well as the choice of m?, i, j = 1, 2, are 
essential to get the final result. 

Some details are given below. 
We start with some brief comments on the discretization. Suppose Rq is 

covered by cubes with edges of length 2 n o / f i ,  where no is a given natural 
number. The discretized version f l y )  of B(" is defined as the center of the cube 
into which fall (with some additional rule for the boundaries of cubes). 
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The crucial property of the discretized estimator &'' is the following one: given 
y > 0, there exists M y  such that for the set Bn = (fi IIby'- PI1 < M,,} it follows 
that P;(B,) > 1 - y  and on the set B, the estimator BF) takes only a finite 
number of values, which depend solely on M y .  The discretization device was 
introduced by Le Cam (1956). For an insightful exposition see Bickel et al. 
(1993), p. 44, or Kreiss (1987), p. 120. The application is immediate and there- 
fore we skip the details. 

To get (4.3), we shall show that 

with PcRq and the other parameters fixed, but otherwise arbitrary, is asymp- 
totically differentiable at fl with the matrix Dp = 0. Indeed, the definition of 
asymptotic differentiability (cf. Schick (2001), p. 15) and the definition ( = [n/2] 
immediately yield that for 

1 c  
R, = - [l*(Zi; B ,  $ ) - I *  (2,; b,, 911 

& i = l  

I it follows that P: (IIRn[I 3 6) -, 0 as n 4 c ~ ,  which is the desired result. 
To check the asymptotic differentiability of H , ( p )  we shall apply Theo- 

rem 2.3 from Schick (2001). First note that from the results of Section 6 of our 
paper it follows that the null model density g (x) f (y - v (x) flT) has Hellinger 
derivative (rep in Schick's notation) of the form 

I 

, (6. (6.5)). As E* (z; P,  9), by definition, is (under P,) orthogonal to the scores for 
the nuisance parameters, we immediately obtain 

Here and throughout the remaining part of the proof we abbreviate A (dx) and 
A(dy) to dx and dy, respectively. 

Therefore, it remains to show that the assumption (2.1) of Schick's Theo- 
rem 2.3 is fulfilled. In the considered problem, (2.1) reads as 

Iim rn (P", fl) = 0, 
B ' B  

where 

f i )  = I J I I ~ * c ~ ,  Y; F, ~ ) J J ( Y - ~ ( X ) B ~ S ( ~ )  
R I  
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The definition of I* (cf. (3.1)) and a change of variables in the integral yield the 
bound 

r n  (BY a> 

It follows from ( M I )  and ( M 2 )  that the functions f'/a and ym are 
from L, (R, A). Obviously, L2 (I, A). Therefore, setting t = 118- 811 and 
rpt (x) = Z, (x) (8"- P ) ~ / I I F -  #?I1 we see that (iii) of Section 6 of this paper is satis- 
fied. This condudes the proof of (4.3). 

As mentioned above, from Section 6 it follows that the model density 
p(z; p,  9.) is HeUinger differentiable at (cf. Section 2 of Schick (2001) for the 
terminology). Therefore, by Lemma 2.3 in Schick (1997), the sequences of 
product measures (P?D,g,) and {P7bn,,,), where {b,) E B(j?), are indeed mutually 
contiguous. This implies that the proof reduces to proving (4.5). 

Let us now rewrite (4.5) in a more convenient form. For this purpose let 
us set 

where the symbol v, denotes the sth component of a k-dimensionaI vector v. 
Using this notation? we read (4.5) as 

(4.7) T , ,  = OPT b,,B) (I) for each s = 1, . . ., k and {b,) EL% (p). 

To check (4.7) we shall apply the following result, which can be obtained by an 
application of Jensen's inequality and the Lebesgue Dominated Convergence 
Theorem. For details see Appendix B in Inglot and Ledwina (2006a). 

PROPOSITION 3. Suppose for each n 2 1, T, is a random variable defined on 
a probability space (%&?,,, P,), E,,IT,( < a, n 2 1. Let be be sub-a-field 
of B,. If E (1 T,/ 1%) 5 0, then P, (I T,I > 6) -, 0 for every 6 > 0. 

This proposition shall be applied to each T,,s, s = 1 ,  . . ., k. We shall take 
= R2", B, the Bore1 a-field in R2", = a(Xl,  . .., X,, . ., Y,) and 

p* = P?bn,,. 
We shall first prove that 

(4.8) E , )  = 0 s = 1 ,  ..., k .  
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Since the conditional density of (Yl, . . ., Yg) under & is of the form 

we have for T, = (T,,,, .. ., T,,,) 

Moreover, from j, f '  (y) d y  = [, yf ( y )  d y  = 0 we get 

i This, a change of variables in the integral (4.9) and another application of 
I 
i 

JRy.f (vbdy = 0 yield 

I 
Since, however, riiI1) = i - y. a ~ ( 1 )  u (Xi) and mL1' = 5- xis<, , v (Xi) we infer 

I that E (T, I E) = 0. This proves (4.8). 
I Therefore, E (T,& I z) = Var (T,, I E) and, by Proposition 3, to get (4.7) it is 
I 

enough to check that 

(4.10) /\ Plb,,s, (Var (T,, I E) > 6) -, 0 as n -+ oo . 
810 

However, notice again that, as previously, under Pybn,,, the conditional density 
5 of (Y,, . . ., q) with respect to is of the form n,=, f (y,-v(Xl) b a .  Hence, 

from (3.8), the conditional variance of T,,, equals 

In consequence, after changing the variables in the above integral, (4.10) 
reads as 
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Now, the artificial b, is no longer useful and applying the contiguity argument 
again, we see that to prove (4.10) it is enough to show that 

The rest of the proof consists of showing that each summand appearing in 
(4.11) is bounded by a common (independent of i) quantity which tends to 0 in 
probability with respect to P;. 

We have - 

F(xil Y ;  0, $)-1?(xi, Y ;  0, 9) 

Now we shall consider the integrals of the squared terms from 
(4.12H4.15). Denote by IT, the distribution on R with density f with respect 
to A. 

As j, y2 f ( yj dy = z E (0, co) and 8') is a consistent estimator of z, we infer 
that the Lz(R, l7,-)-norm of (4.12) tends to 0 in probability. In addition, ex- 
ploiting the consistency of $\'), $&'), p('), we see that the same conclusion 
holds for (4.13). 

Now, rewrite (4.14) as follows: 

As J = J(f) < co and sup, llv (x)l[ < m, the consistency of the pertaining 
estimators implies the required convergence to 0. 

Finally, consider (4.15). Estimating IG:')(Xi)l by 2sup, llu(x)ll and treating 
fi(')(Xi) analogously, we see that the consistency of and f i (2 )  reduces the 

problem to showing that the L,(R, ITf)-norm of ([f'/f](2' - f'/f) tends to 0 
in P:. However, this is just our assumption (3.11). 
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To end the proof, note that when applying Proposition 3 to the case j = 2, 
it is convenient to take = a(X,, . . ., X,, Yl, . . ., Yy). The rest of the argu- 
ment is identical, rn 

Remark  5. The proof of Theorem 1 shows that to get the key result 
W,(rj) 5 x:, using several steps, the problem can be reduced to checking the 
following conditions : 

and 

for j = 1, 2 and every sequence {b , )  E 8 (p). In the considered problem, the 
conditions (*) and (**) play the role of handy counterparts of (i) and (ii) in the 
basic proposition on p. 854 of Choi et al. (1996). 

I 5. DISCUSSION OF THE GENERAL ASSUMPTIONS 

The assumption on the compactly supported density 0 was imposed for I technical convenience. The restriction g > 0 A-a.e. guarantees that the matrix W 
is positive definite. Obviously, both the assumptions are not necessary ones. 

Extensions to multivariate explanatory variable seem to be rather straight- 
forward. 

The assumption that the length d of the list of models is independent of 
n substantially simplifies the considerations. From the practical point of view, 

: 
I 

fixing this number seems to be reasonable. Besides, the very important property 
of our solution is that the critical values of our tests are stable with respect to 
the choice of d and enlarging d does not spoil empirical powers achieved for 
choices of smaller d's. Therefore, reasonable choice of d only depends on two 
factors: how complicated alternatives one likes to detect and how much time 
consuming calculations are reasonable in this context. Possible introducing 
d = d(n),  d (n) + CQ as n + ao, in our constructions has however some 
aesthetical aspect. Namely, for a price of some fine technical work one can get 
then consistency of the related data-driven test for essentially any alternative. 
Such a program, in case of Euclidean nuisance parameters, was elaborated in 
detail in Inglot et al. (1997). 

6. GENERALIZED SHIFT OPERATORS AND THE EFFICIENT SCORE VECTOR 

The degree to which efficient estimation is developed is well illustrated by 
the fact that nowadays many proofs and derivations are not published. For 
example, the efficient score vector for a complicated regression problem is 
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introduced in Schick (1997), p. 375, as follows: "define a map". This is not very 
instructive, especially if e.g. one likes to do some modifications. Therefore we 
rederived "some maps" in Inglot and Ledwina (2003). In the course of the work 
we observed that it would be useful to generalize some standard results of 
Hhjek and Sidik (1967) and simplifjr some traditional calculations in this way. 
Therefore, we briefly comment here on our observations. 

Consider the model 

and define - 

Under this notation set p (z; K) to be the density of Z = (X, Y) under $93 (k). We 
have 

Observe that p1t2 (2; rc), seen as a function of u, is a map from + X, where 
S 2 = d x B x % ,  while d = R k + 4 ,  B=L, ( i , ; I ) ,  W = L , ( R , I ) ,  and Z =  
L, (I x R, Ax 1). Let Il-llal. denote the related norm in 2. The specific structure 
of p1I2 (z; K) (cf. (6.1)) motivates the introduction of an abstract map 

where for an arbitrary measurable function cp on I we define A,:  X + X by 

It can be shown that @ is Hadamard differentiable at each point w = (a, b ,  c) 
such that c is differentiable for every Y E  R and j, [c'lZ d A  < co. Moreover, for 
any (a,, b,, cO) E Q the following holds: 

(cf. Theorem B.ll in Inglot and Ledwina (2003)). The result was derived by 
exploiting the chain rule for Hadamard differentiability and the following basic 
properties of the shift operator A,: 

For any arbitrary measurable q defined on I 
(i) A,  is an isometry on X; 

(ii) for each h~ %', 

Moreover, 
(iii) if (q,, t~ R )  is a family of measurable functions on I satisfying 

lim,,, tcp, ( x )  = 0 for almost all x, then for each h E X it follows that 

lim IJA,, h-  h[lx = 0 .  
t + O  
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A ,  plays a similar role to the standard location operator AT f (y) = 

,f (y - t )  investigated in Hajek and Sidak (1967), pp. 21&212, and exploited in 
later articles on semiparametric estimation. For the proof of (iHiii) as well as 
other useful properties of A ,  and related scale operators see Inglot and Led- 
wina (20031, Section A. Note also that some general shift operators were 
studied in the Appendix of Koul and Schick (1996). 

Consider now the question of the differentiability of p1J2 ( 0 ;  K) itself. Take 
b = &, ,c = 3. Obviously, f and g satisfy j ,gdl. = jR f d l  = 1. So, if one 
wants to approach p 1 1 2  (2; rc) through some, possibly completely artificial, 
"paths7' within the space of densities, then one can disturb b =-A by b , , ~ l ,  
b, + bo EL$, in the following way. Take a real sequence {t,), t, + 0, such that 
for large n the function [b+ tn b,12 is a probability density (with respect to I in 
our setting). This implies that bo has to satisfy J, bo &dA = 0. Therefore, given 
b E &I, define go c 3 by 

Bo = (bo€&': jbobdA = 0). 
I 

Analogously, taking c = ,,@, c. -r co E%, tt + 0 such that for large n 

[ [ c + ~ , c , ] ~ d 3 . = 1  and ~ ~ [ c + $ c , ] ~ d L = O ,  where t ( y ) = y  
R R 

(cf. the model assumptions (Mi)), one can easily infer that c0 has to belong to 
the subspace 

Set fi0 = d x 9, x go. Take f and g satisfying (MI) and 

Moreover, consider a sequence (u,) c 52, on -t w,~S1,, and tn -t 0. In this 
setting (6.3) is applicable at u = (a, b ,  c) = rc and the following holds: 

This relation shows that &~, ( - ) / [$~ l /~  (-; rc)] is the standard form of the Hada- 
mard derivative i,(.j, say, of s,(.) = piJ2 (.; IC); cf. e.g. van der Vaart (1991). So, 
we have 
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This, together with (6.31, implies that the operator i, (-) is defined by the vector 

This vector is not affected by the restrictions on the set of directions from 
which one approaches the model density. However, the restricted set of direc- 
tions 52, plays an essential role when calculating projections of some com- 
ponents of (6.5) onto the subspace spanned by the remaining components 
of (6.5). Also note that the argument relating 4, to S, shows that to get the 
efficient score vector (3.11, it is enough to project the first k coKponents of 
AW,= (- be' w, c ,  b) onto the subspace 

in the standard space Z = L, (I  x R ,  jl x L) and, at the final stage, to divide the 
resulting expressions by $p1I2 I.; K ) .  To calculate projections in A!', one can 
exploit standard results on Hilbert spaces, very nicely presented in Appendices 
A.2 and A.4 of Bickel et al. (1993). Some traditionally applied projections in 
L, (I x R, PA can be avoided in this way. Thus, this approach allows to extract 
purely analytical calculations and separate them from other derivations for 
which a probability space is really needed. This seems to simplify the presen- 
tation. We applied this method of derivation of an efficient score I* (cf. (3.1)) in 
Sections B[l] and C[l] of Inglot and Ledwina (2003). 
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