[see also: alter, change, range, differ, different]

Here $c$ denotes a constant which can vary from line to line.

Fix $n$ and let $c$ vary.

A natural question to ask is how the quantities $A(S,T)$ and $B(S,T)$ vary as $S$ and $T$ change.

As we let $t$ vary, $f(t)$ describes a curve in $M$.

Within $I$, the function $f$ varies $\langle$oscillates$\rangle$ by less than 1.

The idea is that $C$ is fixed, but $X$ and $Y$ vary according to circumstances.

Then $F$ varies smoothly in $t$.

The samples vary in length.

Note that $m$ is permitted to vary with the number of inputs.

A number of authors have considered, in varying degrees of generality, the problem of determining ......

a slowly varying function

Computer evidence suggests the dynamics of these maps is rich and varied.

Go to the list of words starting with: a b c d e f g h i j k l m n o p q r s t u v w y z