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On certain problems concerning the approximation

with interpolatory constraints

Let consider the least squares polynomial approximation by orthogonal poly-
nomials for a discrete case in Hilbert space l2[−1, 1]:

(1) y(x) =
r∑

j=0

fjφj(x), x ∈ [−1, 1], x0 = −1, xN−1 = 1, p ≤ r < N − 1,

subjected to the constraints:

(2) f(xαk
) = y(xαk

) =

r∑

j=0

fjφj(xαk
), 0 ≤ k ≤ p

where

(3) 0 ≤ α0 < α1 < . . . < αp−1 < αp ≤ N − 1.

The continuous case is defined in an analogous way but the constraint can be
located outside the standard interval too. There exists a specific algorithm desi-
gned by W. Gautschi [2] based on splitting of the problem to approximation and
interpolation:

(4) y(x) = ŷ(x) + σ(x)ỹ(x)

where

(5) ŷ(x) =

p∑

j=0

âj φ̂j(x)

is an interpolating polynomial,

(6) ỹ(x) =

r−p−1∑

j=0

ãj φ̃j(x)

is an approximating polynomial,

(7) σ(x) =

p∏

k=0

(x − xαk
) ≡

φ̂p+1(x)

Ap+1,p+1

is the adjusting term. An analogous splitting is proposed by Bakhasi and Iqbal [1].
For interpolation on p + 1 nodes, and for approximation we have respectively:

Variant 1: We use simply f(x) as function to be approximated.
Variant 2: We define now a new function for unconstrained approximating term:

(8) f̌ (x) =
f(x) − ŷ(x)

σ(x)
.
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Variant 3: We define for unconstrained approximating term

(9) f̄(x) = f(x) − ŷ(x).

We can improve the results obtained from the 3 variants presented above using the
modified formula

(10) y(x, ε) = ŷ(x) + εσ(x)ỹ(x)

where ε is unknown.
We build the following functional in the Hilbert space l2[−1, 1]:

(11) J1(ε) = ‖f − (ŷ + εσỹ)‖2
l2[−1,1] = MIN

and we then obtain after some manipulations the searched value of the parameter ε:

(12) ε =
(f − ŷ, σỹ)L2[−1,1]

‖σỹ‖L2[−1,1]
.

If the value of ε is near to 1 then the initial solution is well defined, otherwise it is
poor defined.

The algorithm expressed by (1–3) is implemented as program HEL.
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