M. Sc. eng. Grzegorz Shugocki

Warsaw University of Technology, Faculty for Power and Aerospace Engineering

On certain problems concerning the approximation with interpolatory constraints

Let consider the least squares polynomial approximation by orthogonal polynomials for a discrete case in Hilbert space $l^{2}[-1,1]$:

$$
\begin{equation*}
y(x)=\sum_{j=0}^{r} f_{j} \phi_{j}(x), \quad x \in[-1,1], x_{0}=-1, x_{N-1}=1, p \leq r<N-1, \tag{1}
\end{equation*}
$$

subjected to the constraints:

$$
\begin{equation*}
f\left(x_{\alpha_{k}}\right)=y\left(x_{\alpha_{k}}\right)=\sum_{j=0}^{r} f_{j} \phi_{j}\left(x_{\alpha_{k}}\right), \quad 0 \leq k \leq p \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leq \alpha_{0}<\alpha_{1}<\ldots<\alpha_{p-1}<\alpha_{p} \leq N-1 \tag{3}
\end{equation*}
$$

The continuous case is defined in an analogous way but the constraint can be located outside the standard interval too. There exists a specific algorithm designed by W. Gautschi [2] based on splitting of the problem to approximation and interpolation:

$$
\begin{equation*}
y(x)=\hat{y}(x)+\sigma(x) \tilde{y}(x) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{y}(x)=\sum_{j=0}^{p} \hat{a}_{j} \hat{\phi}_{j}(x) \tag{5}
\end{equation*}
$$

is an interpolating polynomial,

$$
\begin{equation*}
\tilde{y}(x)=\sum_{j=0}^{r-p-1} \tilde{a}_{j} \tilde{\phi}_{j}(x) \tag{6}
\end{equation*}
$$

is an approximating polynomial,

$$
\begin{equation*}
\sigma(x)=\prod_{k=0}^{p}\left(x-x_{\alpha_{k}}\right) \equiv \frac{\hat{\phi}_{p+1}(x)}{A_{p+1, p+1}} \tag{7}
\end{equation*}
$$

is the adjusting term. An analogous splitting is proposed by Bakhasi and Iqbal [1].
For interpolation on $p+1$ nodes, and for approximation we have respectively:
Variant 1: We use simply $f(x)$ as function to be approximated.
Variant 2: We define now a new function for unconstrained approximating term:

$$
\begin{equation*}
\check{f}(x)=\frac{f(x)-\hat{y}(x)}{\sigma(x)} . \tag{8}
\end{equation*}
$$

Variant 3: We define for unconstrained approximating term

$$
\begin{equation*}
\bar{f}(x)=f(x)-\hat{y}(x) \tag{9}
\end{equation*}
$$

We can improve the results obtained from the 3 variants presented above using the modified formula

$$
\begin{equation*}
y(x, \varepsilon)=\hat{y}(x)+\varepsilon \sigma(x) \tilde{y}(x) \tag{10}
\end{equation*}
$$

where ε is unknown.
We build the following functional in the Hilbert space $l^{2}[-1,1]$:

$$
\begin{equation*}
J_{1}(\varepsilon)=\|f-(\hat{y}+\varepsilon \sigma \tilde{y})\|_{l^{2}[-1,1]}^{2}=M I N \tag{11}
\end{equation*}
$$

and we then obtain after some manipulations the searched value of the parameter ε :

$$
\begin{equation*}
\varepsilon=\frac{(f-\hat{y}, \sigma \tilde{y})_{L^{2}[-1,1]}}{\|\sigma \tilde{y}\|_{L^{2}[-1,1]}} \tag{12}
\end{equation*}
$$

If the value of ε is near to 1 then the initial solution is well defined, otherwise it is poor defined.

The algorithm expressed by (1-3) is implemented as program HEL.

References

[1] M. A. Bakhasi, M. Iqbal, L^{2}-approximation of real valued functions with interpolatory constraints, Journal of Computational and Applied Mathematics 70 (1996), 201-205.
[2] W. Gautschi, Orthogonal Polynomials, Algorithms and Applications, Springer, Berlin, Heidelberg, New York 2004.

