HORN'S PROBLEM, AND FOURIER ANALYSIS

JACQUES FARAUT

Let A and B be two $n \times n$ Hermitian matrices. Assume that the eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ of A are knowm, as well as the eigenvalues $\beta_{1}, \ldots, \beta_{n}$ of B. What can be said about the eigenvalues of the sum $C=A+B$? This is Horn's problem. In 1962 Horn proposed a conjecture, the so-called Horn's conjecture, which says: the set of possible eigenvalues $\gamma_{1}, \ldots, \gamma_{n}$ for C is determined by a system of linear inequalities of the form

$$
\sum_{k \in K} \gamma_{k} \leq \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}
$$

where (I, J, K) is a triple of subsets of $\{1,2, \ldots, n\}$ which is admissible (in a sense to be given). Horn's conjecture has been proven by Klyachko in 1998.

We revisit this problem from a probabilistic point of view. The set of Hermitian matrices X with spectrum $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an orbit \mathcal{O}_{α} for the natural action of the unitary group $U(n): X \mapsto U X U^{*}(U \in U(n))$. Assume that the random Hermitian matrix X is uniformly distributed on the orbit \mathcal{O}_{α}, and the random Hermitian matrix Y is uniformly distributed on \mathcal{O}_{β}. In this talk we will present a formula for the joint distribution of the eigenvalues of the sum $Z=X+Y$. The proof involves orbital measures with their Fourier transforms, and Heckman's measures.

