HORN'S PROBLEM, AND FOURIER ANALYSIS

JACQUES FARAUT

Let A and B be two $n \times n$ Hermitian matrices. Assume that the eigenvalues $\alpha_1, \ldots, \alpha_n$ of A are known, as well as the eigenvalues β_1, \ldots, β_n of B. What can be said about the eigenvalues of the sum C = A + B? This is Horn's problem. In 1962 Horn proposed a conjecture, the so-called Horn's conjecture, which says: the set of possible eigenvalues $\gamma_1, \ldots, \gamma_n$ for C is determined by a system of linear inequalities of the form

$$\sum_{k \in K} \gamma_k \le \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j,$$

where (I, J, K) is a triple of subsets of $\{1, 2, ..., n\}$ which is *admissible* (in a sense to be given). Horn's conjecture has been proven by Klyachko in 1998.

We revisit this problem from a probabilistic point of view. The set of Hermitian matrices X with spectrum $\{\alpha_1, \ldots, \alpha_n\}$ is an orbit \mathcal{O}_{α} for the natural action of the unitary group U(n): $X \mapsto UXU^*$ $(U \in U(n))$. Assume that the random Hermitian matrix X is uniformly distributed on the orbit \mathcal{O}_{α} , and the random Hermitian matrix Y is uniformly distributed on \mathcal{O}_{β} . In this talk we will present a formula for the joint distribution of the eigenvalues of the sum Z = X + Y. The proof involves orbital measures with their Fourier transforms, and Heckman's measures.