NESTED OCCUPANCY SCHEMES IN RANDOM ENVIRONMENTS

ALEXANDER IKSANOV (KYIV, UKRAINE)

Let $(P_r)_{r\in\mathbb{N}}$ be a collection of positive random variables satisfying $\sum_{r\geq 1} P_r = 1$ a.s. Assume that, given $(P_r)_{r\in\mathbb{N}}$, 'balls' are allocated independently over an infinite collection of 'boxes' 1, 2,... with probability P_r of hitting box $r, r \in \mathbb{N}$. The occupancy scheme arising in this way is called the *infinite occupancy scheme in the random environment* $(P_r)_{r\geq 1}$.

A popular model of the infinite occupancy scheme in the random environment assumes that the probabilities $(P_r)_{r\in\mathbb{N}}$ are formed by an enumeration of the a.s. positive points of

(1)
$$\{e^{-X(t-)}(1-e^{-\Delta X(t)}): t \ge 0\},\$$

where $X := (X(t))_{t \geq 0}$ is a subordinator (a nondecreasing Lévy process) with X(0) = 0, zero drift, no killing and a nonzero Lévy measure, and $\Delta X(t)$ is a jump of X at time t. Since the closed range of the process X is a regenerative subset of $[0, \infty)$ of zero Lebesgue measure, one has $\sum_{r \geq 1} P_r = 1$ a.s. When X is a compound Poisson process, collection (1) transforms into a residual allocation model

(2)
$$P_r := W_1 W_2 \cdot \ldots \cdot W_{r-1} (1 - W_r), \quad r \in \mathbb{N},$$

where W_1, W_2, \ldots are i.i.d. random variables taking values in (0,1).

Next, I define a nested infinite sequence of the infinite occupancy schemes in random environments. This means that I construct a nested sequence of environments (random probabilities) and the corresponding 'boxes' so that the same collection of 'balls' is thrown into all 'boxes'. To this end, I use a weighted branching process with positive weights which is nothing else but a multiplicative counterpart of a branching random walk.

The nested sequence of environments is formed by the weights $(R(u))_{|u|=1} = (P_r)_{r \in \mathbb{N}}$, $(R(u))_{|u|=2}, \ldots$, say, of the subsequent generations individuals in a weighted branching process. Further, I identify individuals with 'boxes'. At time j=0, all 'balls' are collected in the box \oslash which corresponds to the initial ancestor. At time j=1, given $(R(u))_{|u|=1}$, 'balls' are allocated independently with probability R(u) of hitting box u, |u|=1. At time j=k, given $(R(u))_{|u|=1},\ldots,(R(u))_{|u|=k}$, a ball located in the box u with |u|=k is placed independently of the others into the box ur, $r \in \mathbb{N}$ with probability R(ur)/R(u).

Assume that there are n balls. For r = 1, 2, ..., n and $j \in \mathbb{N}$, denote by $K_{n,j,r}$ the number of boxes in the jth generation which contain exactly r balls and set

$$K_{n,j}(s) := \sum_{r=\lceil n^{1-s} \rceil}^{n} K_{n,j,r}, \quad s \in [0,1],$$

where $x \mapsto \lceil x \rceil = \min\{n \in \mathbb{Z} : n \geq x\}$ is the ceiling function. With probability one the random function $s \mapsto K_{n,j}(s)$ is right-continuous on [0,1) and has finite limits from the left on (0,1] and as such belongs to the Skorokhod space D[0,1]. I am going to present sufficient conditions which ensure functional weak convergence of $(K_{n,j_1}(s),\ldots,K_{n,j_m}(s))$, properly normalized and centered, for any finite collection of indices $1 \leq j_1 < \ldots < j_m$ as the number n of balls tends to ∞ . If time permits, I shall discuss specializations of the general result to $(P_r)_{r \in \mathbb{N}}$ given by (1) and (2).

The talk is based on a work in progress, joint with Sasha Gnedin (London).