NESTED OCCUPANCY SCHEMES IN RANDOM ENVIRONMENTS

ALEXANDER IKSANOV (KYIV, UKRAINE)

Let $\left(P_{r}\right)_{r \in \mathbb{N}}$ be a collection of positive random variables satisfying $\sum_{r \geq 1} P_{r}=1$ a.s. Assume that, given $\left(P_{r}\right)_{r \in \mathbb{N}}$, 'balls' are allocated independently over an infinite collection of 'boxes' $1,2, \ldots$ with probability P_{r} of hitting box $r, r \in \mathbb{N}$. The occupancy scheme arising in this way is called the infinite occupancy scheme in the random environment $\left(P_{r}\right)_{r \geq 1}$.

A popular model of the infinite occupancy scheme in the random environment assumes that the probabilities $\left(P_{r}\right)_{r \in \mathbb{N}}$ are formed by an enumeration of the a.s. positive points of

$$
\begin{equation*}
\left\{e^{-X(t-)}\left(1-e^{-\Delta X(t)}\right): t \geq 0\right\} \tag{1}
\end{equation*}
$$

where $X:=(X(t))_{t \geq 0}$ is a subordinator (a nondecreasing Lévy process) with $X(0)=0$, zero drift, no killing and a nonzero Lévy measure, and $\Delta X(t)$ is a jump of X at time t. Since the closed range of the process X is a regenerative subset of $[0, \infty)$ of zero Lebesgue measure, one has $\sum_{r \geq 1} P_{r}=1$ a.s. When X is a compound Poisson process, collection (1) transforms into a residual allocation model

$$
\begin{equation*}
P_{r}:=W_{1} W_{2} \cdot \ldots \cdot W_{r-1}\left(1-W_{r}\right), \quad r \in \mathbb{N}, \tag{2}
\end{equation*}
$$

where W_{1}, W_{2}, \ldots are i.i.d. random variables taking values in $(0,1)$.
Next, I define a nested infinite sequence of the infinite occupancy schemes in random environments. This means that I construct a nested sequence of environments (random probabilities) and the corresponding 'boxes' so that the same collection of 'balls' is thrown into all 'boxes'. To this end, I use a weighted branching process with positive weights which is nothing else but a multiplicative counterpart of a branching random walk.

The nested sequence of environments is formed by the weights $(R(u))_{|u|=1}=\left(P_{r}\right)_{r \in \mathbb{N}},(R(u))_{|u|=2}, \ldots$, say, of the subsequent generations individuals in a weighted branching process. Further, I identify individuals with 'boxes'. At time $j=0$, all 'balls' are collected in the box \oslash which corresponds to the initial ancestor. At time $j=1$, given $(R(u))_{|u|=1}$, 'balls' are allocated independently with probability $R(u)$ of hitting box u, $|u|=1$. At time $j=k$, given $(R(u))_{|u|=1}, \ldots,(R(u))_{|u|=k}$, a ball located in the box u with $|u|=k$ is placed independently of the others into the box $u r, r \in \mathbb{N}$ with probability $R(u r) / R(u)$.

Assume that there are n balls. For $r=1,2, \ldots, n$ and $j \in \mathbb{N}$, denote by $K_{n, j, r}$ the number of boxes in the j th generation which contain exactly r balls and set

$$
K_{n, j}(s):=\sum_{r=\left\lceil n^{1-s}\right\rceil}^{n} K_{n, j, r}, \quad s \in[0,1],
$$

where $x \mapsto\lceil x\rceil=\min \{n \in \mathbb{Z}: n \geq x\}$ is the ceiling function. With probability one the random function $s \mapsto K_{n, j}(s)$ is right-continuous on $[0,1)$ and has finite limits from the left on $(0,1]$ and as such belongs to the Skorokhod space $D[0,1]$. I am going to present sufficient conditions which ensure functional weak convergence of $\left(K_{n, j_{1}}(s), \ldots, K_{n, j_{m}}(s)\right)$, properly normalized and centered, for any finite collection of indices $1 \leq j_{1}<\ldots<j_{m}$ as the number n of balls tends to ∞. If time permits, I shall discuss specializations of the general result to $\left(P_{r}\right)_{r \in \mathbb{N}}$ given by (11) and (22).

The talk is based on a work in progress, joint with Sasha Gnedin (London).

