LIMIT THEOREMS FOR THE LEAST COMMON MULTIPLE OF A RANDOM SET OF INTEGERS

ALEXANDER MARYNYCH

Let L_n be the least common multiple of a random set of integers obtained from $\{1, 2, \ldots, n\}$ by retaining each element with probability $\theta \in (0, 1)$ independently of the others. In the talk I will discuss several asymptotic results for $\log L_n$, as $n \to \infty$. In particular, it will be shown that if θ is fixed, then a functional limit theorem for the sequence of random functions $[0, 1] \ni t \mapsto \log L_{\lfloor nt \rfloor}$ holds with a Gaussian limit process that is not a Brownian motion. I will also discuss regimes when θ varies with n leading to Poisson limit theorems. The talk is based on the joint paper [1] with G. Alsmeyer and Z. Kabluchko (Münster, Germany).

$\operatorname{References}$

- G. ALSMEYER, Z. KABLUCHKO AND A. MARYNYCH (2018). Limit theorems for the least common multiple of a random set of integers. Preprint available at https://arxiv.org/abs/1801.08934.
- [2] CILLERUELO, J., RUÉ, J., ŠARKA, P. AND ZUMALACÁRREGUI, A. (2014). The least common multiple of random sets of positive integers. J. Numb. Theory 144, p. 92-104.