LIMIT THEOREMS FOR THE LEAST COMMON MULTIPLE OF A RANDOM SET OF INTEGERS

ALEXANDER MARYNYCH

Let L_{n} be the least common multiple of a random set of integers obtained from $\{1,2, \ldots, n\}$ by retaining each element with probability $\theta \in(0,1)$ independently of the others. In the talk I will discuss several asymptotic results for $\log L_{n}$, as $n \rightarrow \infty$. In particular, it will be shown that if θ is fixed, then a functional limit theorem for the sequence of random functions $[0,1] \ni t \mapsto \log L_{\lfloor n t\rfloor}$ holds with a Gaussian limit process that is not a Brownian motion. I will also discuss regimes when θ varies with n leading to Poisson limit theorems. The talk is based on the joint paper [1] with G. Alsmeyer and Z. Kabluchko (Münster, Germany).

References

[1] G. Alsmeyer, Z. Kabluchko and A. Marynych (2018). Limit theorems for the least common multiple of a random set of integers. Preprint available at https://arxiv.org/abs/1801. 08934.
[2] Cilleruelo, J., Rué, J., Šarka, P. and Zumalacárregui, A. (2014). The least common multiple of random sets of positive integers. J. Numb. Theory 144, p. 92-104.

