SHARP MULTIPLIER THEOREM FOR HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE

EDYTA KANIA

The classical Hörmader multiplier theorem states that if m satisfies

(S)
$$\sup_{t>0} ||\eta(\cdot)m(t\cdot)||_{W^{2,\beta}(\mathbb{R})} \le c_{\eta},$$

with some $\beta > d/2$, then operator $m(-\Delta)$ is of weak type (1,1) and bounded on $L^p(\mathbb{R}^d)$ for every $p \in (1, \infty)$. Here $0 \le \eta \in C_c^{\infty}(2^{-1}, 2)$ is fixed and $W^{2,\beta}(\mathbb{R})$ is the standard L^2 -Sobolev norm on \mathbb{R} . It is well-known that the constant d/2 is sharp. Similar multiplier theorem is known on the Hardy space $H^1(\mathbb{R}^d)$. In the talk we shall consider some generalizations of this results.

Suppose the metric-measure space (X, ρ, μ) satisfies the doubling condition, which implies that there exists constant d such that

(D)
$$\mu(B(x,\gamma r)) \le C(1+\gamma)^d \mu(B(x,r)), \quad \gamma > 0, \ x \in X, \ r > 0.$$

Assume that the semigroup $P_t = \exp(-tA)$ generated by a self-adjoint positive operator A satisfies the lower and upper gaussian bounds. Moreover, suppose that there exists C > 0, such that for every R > 0 and a measurable function m on \mathbb{R} such that $\sup(m) \subseteq [R/2, R]$ we have

(P)
$$\int_X |K_{m(A)}(x,y)|^2 d\mu(x) \le C\mu(B(y,R^{-1/2}))^{-1} ||m(R\cdot)||^2_{L^2(X)}$$

We prove that if the bounded function m satisfies (S) with $\beta > d/2$, then m(A) is bounded from $H^1(A)$ to $H^1(A)$, where $H^1(A) = \{f \in L^1(X) : \|\sup_{t>0} |P_t f|\|_{L^1(X,\mu)} < \infty\}$ denotes the Hardy space associated with A.

As a main example we consider the multiparameter Bessel operator $B = B_1 + \ldots + B_N$, where $B_i f(x) = -\delta_j^2 f(x) - \alpha_j / x_j \delta_j f(x)$, $\alpha_j > -1$, on the space $(0, \infty)^N$ with the Euclidean metric and the measure $x^{\alpha_1} \ldots x_N^{\alpha_N} dx_1 \ldots dx_N$. The condition (D) is satisfied with $d = \sum_{j=1}^N \max(1, 1+\alpha_j)$. By analysing the imaginary powers $B^{ib}, b \in \mathbb{R}$, of the one-dimensional Bessel operator we show that in this case the constant d/2 is sharp.

The talk is based on the joint work with Marcin Preisner (University of Wrocław).