EXTENSION THEOREM FOR NONLOCAL OPERATORS

ARTUR RUTKOWSKI

We present an extension theorem related to spaces generated by quadratic forms

$$\mathcal{E}_D(u,u) = \iint_{(D^c \times D^c)^c} (u(x) - u(y))^2 \nu(x,y) \, dx \, dy.$$

Here D is an open subset of \mathbb{R}^d , and ν is a Lévy-type kernel. To establish our results, we use objects and methods from the potential theory, in particular the communication kernel

$$\gamma_D(z,w) = \int_D P_D(x,w)\nu(z,x)\,dx, \quad z,w \in D^c,$$

where P_D is the Poisson kernel of D.

Our extension theorem states that if squared increments of a function g given on D^c are integrable with weight γ_D , then the harmonic function, given for $x \in D$ by the Poisson integral $\int_{D^c} g(z) P_D(x, z) dz$, serves as the extension of g, i.e. its \mathcal{E}_D form is finite.

We also provide estimates for the kernel γ_D and applications to the Dirichlet problem for nonlocal operators associated with ν .

The talk is based on joint work [1] with Krzysztof Bogdan, Tomasz Grzywny and Katarzyna Pietruska-Pałuba.

$\operatorname{References}$

[1] Bogdan K., Grzywny T., Pietruska-Pałuba K., Rutkowski A., Extension theorem for nonlocal operators, arXiv:1710.05580.