CENTRAL LIMIT THEOREM FOR ORTHOGONAL POLYNOMIAL ENSEMBLES AT MESOSCOPIC SCALES

GRZEGORZ ŚWIDERSKI

Let μ be a probability measure on the real line having all of the moments finite. The orthogonal polynomial ensemble of size $n \in \mathbb{N}$ is a measure on \mathbb{R}^n proportional to

$$\prod_{1 \le i < j \le n} (x_i - x_j)^2 \mathrm{d}\mu(x_1) \dots \mathrm{d}\mu(x_n).$$

The associated linear statistics are expressions of the form

$$X_{f,\alpha,x_0}^{(n)} = \sum_{j=1}^{n} f(n^{\alpha}(x_j - x_0)),$$

where $f : \mathbb{R} \to \mathbb{R}$ is a smooth function, x_0 is a real number and $\alpha \in (0, 1)$.

We are going to present CLT for linear statistics under conditions imposed on the three-term recourrence relation satisfied by the orthogonal polynomials associated with the measure μ . Following recent work of Gaultier Lambert, the proof is reduced to the derivation of precise asymptotics of the orthogonal polynomials in question.

It is a joint work with Bartosz Trojan.