HEAT KERNELS OF NON-SYMMETRIC LÉVY-TYPE OPERATORS

KAROL SZCZYPKOWSKI

We construct the fundamental solution (the heat kernel) p^{κ} to the equation $\partial_t = \mathcal{L}^{\kappa}$, where under certain assumptions the operator \mathcal{L}^{κ} takes one of the following forms,

$$\begin{split} \mathcal{L}^{\kappa}f(x) &:= \int_{\mathbb{R}^d} (f(x+z) - f(x) - \mathbf{1}_{|z| < 1} \left\langle z, \nabla f(x) \right\rangle) \kappa(x, z) J(z) \, dz \,, \\ \mathcal{L}^{\kappa}f(x) &:= \int_{\mathbb{R}^d} (f(x+z) - f(x)) \kappa(x, z) J(z) \, dz \,, \\ \mathcal{L}^{\kappa}f(x) &:= \frac{1}{2} \int_{\mathbb{R}^d} (f(x+z) + f(x-z) - 2f(x)) \kappa(x, z) J(z) \, dz \,. \end{split}$$

In particular, $J: \mathbb{R}^d \to [0, \infty]$ is a Lévy density, i.e., $\int_{\mathbb{R}^d} (1 \wedge |x|^2) J(x) dx < \infty$. The function $\kappa(x, z)$ is assumed to be Borel measurable on $\mathbb{R}^d \times \mathbb{R}^d$ satisfying $0 < \kappa_0 \le \kappa(x, z) \le \kappa_1$, and $|\kappa(x, z) - \kappa(y, z)| \le \kappa_2 |x - y|^\beta$ for some $\beta \in (0, 1)$. We prove the uniqueness, estimates, regularity and other qualitative properties of p^{κ} . It gives rise to a Feller semigroup $(P_t)_{t\geq 0}$ and a Feller process $X = (X_t, \mathbb{P}^x)$ that in turn solves the martingale problem for $(\mathcal{L}^{\kappa}, C_c^{\infty}(\mathbb{R}^d))$.

The talk is based on a joint work with T. Grzywny.