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Homogeneity properties of metric spaces

A metric space X is said to be
(uniquely) n-homogeneous for n ∈ N+ if for every isometry
f : A→ B between subspaces A,B ⊆ X with (0 <)|A| ≤ n
there exists a (unique) automorphism F : X → X extending f ,
i.e. F |A = f ;
(uniquely) ultrahomogeneous if it is (uniquely) n-homogeneous
for every n ∈ N+.

Note that X is uniquely n-homogeneous if and only if it is
n-homogeneous and uniquely 1-homogeneous.
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Isosceles-free spaces

A metric space (X , d) is called isosceles-free if d(x , y) 6= d(x , z) for
distinct points x , y , z ∈ X .

Example

a

b
c

Introduced by Janoš and Martin in 1978 under the name “star rigid”.
An isosceles-free space is zero dimensional Hattori (1990).
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Isosceles-free spaces and embeddings

Proposition

Let X be a metric space and Y is isosceles-free. For every x ∈ X ,
y ∈ Y there exists at most one isometric embedding f : X → Y
with f (x) = y .

Proof.
Let f , g be isometric embeddings with f (x) = y = g(x). For
x ′ ∈ X , we have d(y , f (x ′)) = d(x , x ′) = d(y , g(x ′))
⇒ f (x ′) = g(x ′).

Corollary

Every 1-homogeneous isosceles-free space X is uniquely
1-homogeneous.
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Isosceles-free spaces and homogeneity

Proposition

Every 1-homogeneous isosceles-free space X is ultrahomogeneous.

Proof.
Let A,B ⊂ X finite, i : A→ B isometry. For fixed x ∈ A exists
automorphism f : X → X with f (x) = i(x).Then f |A and i are
isometric embeddings A→ X with x 7→ i(x), hence f |A = i by the
previous Proposition.

Hence the notation homogeneous isosceles free space makes sense.

Proposition

A metric space X is homogeneous isosceles-free if and only if it is
uniquely 2-homogeneous.
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The automorphism group of isosceles-free spaces

Recall: A group G is Boolean g2 = 1 for all g ∈ G . Note that
Boolean groups are Abelian.

Proposition

For every isosceles-free space X the isometry group Aut(X ) is
Boolean.

We consider Dist(X ) = {d(x , y) : x , y ∈ X} and for a ∈ X

the distance map Da : X → Dist(X ), x 7→ d(x , a),
the evaluation map Ea : Aut(X )→ X , f 7→ f (a).

Observe that X is homogeneous isosceles-free iff Da and Ea are
bijective for every a ∈ X .

Corollary

For every finite homogeneous isosceles-free metric space X we have
|X | = 2m for some m ∈ ω.
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Weak amalgamation property

We consider the class K of finite isosceles-free spaces (with
isometric embeddings).
Does it have the amalgamation property? No
What about the weak amalgamation property?

X

A B Z

Y

πX

φ

ψX

ψY
πY

Theorem
The class of all finite isosceles-free spaces does not have the weak
amalgamation property.
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Normed Z2-linear spaces and Boolean metric spaces

By a norm on an Abelian group X we mean a map
‖·‖ : X → [0,∞) such that

1 ‖x‖ = 0 if and only if x = 0, for x ∈ X ,
2 ‖x + y‖ ≤ ‖x‖+ ‖y‖, for x , y ∈ X ,
3 ‖−x‖ = ‖x‖, for x ∈ X .

If X is even Boolean, i.e. x = −x , then X can be interpreted as
Z2-linear space and every norm satisfies ‖α · x‖ = |α| · ‖x‖ for
every α ∈ Z2 and x ∈ X , so it is a Z2-norm.
We call a metric space Y Boolean if Aut(Y ) is a Boolean group.
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1-homogeneous spaces and norms on Aut(X )

Proposition

Let X be a 1-homogeneous space such that Aut(X ) is Abelian.
1 For f ∈ Aut(X ), d(x , f (x)) does not depend on x ∈ X .
2 ‖f ‖ := d(x , f (x)) for x ∈ X defines a norm on 〈Aut(X ), ◦〉.
3 X is uniquely 1-homogeneous.
4 Ea : Aut(X )→ X , f 7→ f (a) is an isometry for every a ∈ X .
5 Aut(X ) is a Boolean group.

Corollary

For a 1-homogeneous metric space X , Aut(X ) is Abelian iff it is
Boolean. In this case, X is uniquely 1-homogeneous.
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Isosceles-free spaces and Normed Z2-linear spaces

Corollary

Let X be a Boolean metric space. Aut(X ) is a normed Z2-linear
space, and the canonical action of Aut(X ) on X turns X into an
affine space over Aut(X ). Moreover, every evaluation map
Ea : Aut(X )→ X is an affine isometry.

Moreover, for a metric space X we have the following.
1 X is Boolean if and only if it is isometric to Z2-normed space

and uniquely 1-homogeneous.
2 X is homogeneous isosceles-free if and only if it is Boolean and

2-homogeneous.
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Representation of homogenous isosceles-free spaces

Given a Z2-linear space, choosing a basis we obtain an isomorphism
to Z(I )

2 = {v ∈ ZI
2 : v has finite support}.

We view Z(I )
2 as the family Pω(I ) of all finite subsets of I with the

operation of symmetric difference: A4 B = (A \ B) ∪ (B \ A). We
use the notation 2(I ) for 〈Pω(I ),4〉.

Theorem
Let I be a set and let ‖·‖ : 2(I ) → [0,∞) be an injective map
satisfying ‖∅‖ = 0 and ‖x 4 y‖ ≤ ‖x‖+ ‖y‖ for x , y ∈ 2(I ). By
putting d(x , y) := ‖x 4 y‖ for x , y ∈ 2(I ) we obtain a
homogeneous isosceles-free space. Moreover, every homogeneous
isosceles-free space can be obtained this way up to an isometry.
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Overview of these properties

homogeneous isosceles-free Boolean Z2-normable

ultrahomogeneous 2-homogeneous 1-homogeneous

uniquely 1-homogeneousuniquely 2-homogeneous
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Decomposition in isosceles free components

We call SX := {r ∈ Dist(X ) : ∀x ∈ X∃!y ∈ X with d(x , y) = r}
the set of singleton distances.
We call an equivalence relation ∼ on X invariant if for every
f ∈ Aut(X ) we have f (x) ∼ f (y) iff x ∼ y .

Theorem
Let X be a 2-homogeneous space and let x ∼ y if d(x , y) ∈ SX for
x , y ∈ X . Then, ∼ is an invariant equivalence relation inducing a
decomposition of X into pairwise isometric homogeneous
isosceles-free spaces.

Example: Decomposition of C4 (blackboard).
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A somewhat dual construction: isosceles-generated components

Theorem
Let X be a 1-homogeneous space. Let x ∼ y if there is z 6= y such
that d(x , y) = d(x , z), i.e. we collapse all non-degenerate isosceles
triangles.

1 ∼ is invariant and induced a decomposition into isometric
1-homogeneous components. In particular, automorphisms
map components onto components.

2 f |X/∼| ≥ 2, then X is uniquely 1-homogeneous.

3 Every f ∈ Aut(X ) either fixes all components C (setwise), or
none of them. In the latter case we have f ◦ f = id.

4 If |X/∼| ≥ 3, then Aut(X ) is Boolean, i.e. X is a Boolean
metric space.

Example: Decomposition of C4 (blackboard).
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Isosceles-generated spaces

A metric space X is called isosceles-generated if its decomposition
into isosceles-generated components has at most one component.
In other words, we have two extreme cases:

1 All isosceles-generated components of X are singletons, then
X is isosceles-free.

2 If there is at most one isosceles-generated component, then X
is isosceles-generated.

Examples of isosceles-generated spaces: C4, Rd , . . .
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The Rainbow Duplicate

Let X be a 1-homogeneous space, H ≤ Aut(X ) an Abelian
subgroup s. t. for every x , y ∈ X there is a unique element h ∈ H
(denoted by hyx ) s. t. h(x) = y . We define the rainbow duplicate of
X as the metric space X ×r 2 with the distance

d(〈x , 0〉, 〈y , 0〉) = d(〈x , 1〉, 〈y , 1〉) = dX (x , y),

d(〈x , 0〉, 〈y , 1〉) = r(hyx ),

where r : H → (0,∞) \ Dist(X ) is an injective map s. t. triangle
inequality in X ×r 2 is satisfied. We also suppose there exists a map
g ∈ Aut(X ) s. t. g ◦ g = id and g ◦ h ◦ g−1 = h−1 for every h ∈ H.
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Properties of the rainbow duplicate

X is 1-homogeneous, H ≤ Aut(X ) an Abelian with unique hyx ∈ H
with hyx (x) = y for x , y ∈ X and r : H → (0,∞) \ Dist(X )
injective.

Properties of X ×r 2
1 |r(h)− r(h′)| ≤ min(Dist(X ) \ {0}) and r(h) ≥ max(Dist(X ))

for every h, h′ ∈ H, imply the triangle inequality of d .
2 Dist(X ×r 2) = Dist(X ) ∪ im(r), which is a disjoint union.
3 The decomposition of X ×r 2 into isosceles-generated

components refines {X × {0},X × {1}}, with equality iff X is
isosceles-generated.

4 The map eH : h 7→ h × id is a group embedding
H → Aut(X ×r 2).

5 The rainbow duplicate X ×r 2 is 1-homogeneous
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General 1-homogeneous metric spaces

Theorem
Let X be a 1-homogeneous metric space. Then one of the following
is true.

1 X is isosceles-generated.
2 X is a rainbow duplicate of an isosceles-generated space.
3 X is a Boolean metric space.

Suppose that X is even 2-homogeneous. Then one of the following
is true.

1 X is isosceles-generated.
2 X is isosceles-free.
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Maximal number of distances in homogeneous spaces

Let X be a metric space with n elements.
Two simple observations:

1 If X has the discrete metric (δ(X ) := |Dist(X )| = 2), it is
ultrahomoegenous.

2 If X is 1-homogeneous, then δ(X ) ≤ n.
Question: What is the maximal number of distances, so that X can
be k-homogeneous/ultrahomogeneous?

For k ∈ N we set

∆k(n) := max{δ(X ) : X a k-homogeneous space with |X | = n},
∆ω(n) := max{δ(X ) : X an ultrahomogeneous space with |X | = n}.

Clearly, we have ∆ω(n) ≤ · · · ≤ ∆2(n) ≤ ∆1(n) for every n ∈ N+.
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A first upper bound for 1-homogeneous spaces

Let X be a finite 1-homogeneous n-point space. Clearly, δ(X ) ≤ n.
Recall that SX is the set of “singleton distances”. We have
δ(X ) ≤ (|SX |+ |X |)/2, because

Dx : X → Dist(X ), y 7→ d(x , y)

is a surjection where exactly the elements of SX have a unique
preimage. Hence, |X | ≥ |SX |+ 2(δ(X )− |SX |).

Proposition

We have δ(X ) = n if and only if X is isosceles-free, and in this case
X is ultrahomogeneous and n is a power of two. In other words,
∆ω(n) = ∆1(n) = n if n = 2m, and ∆1(n) < n otherwise.

For n = 2m the bound is optimal, since Xn is a homogenous
isosceles-free space with n elements.
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An upper bound for 2-homogeneous spaces

Theorem
For a finite 2-homogeneous metric space X of n := |X | elements,
where n = 2m(2k + 1), we have δ(X ) ≤ 2m(k + 1) =: βn.

Proof.
Consider the decomposition of X into isosceles-free components
X/∼. We have |SX | = |C | for any C ∈ X/∼. Moreover, |C | = 2p

for some p since C is homogenous isosceles-free, and |C | ≤ 2m

since X/∼ is a decomposition into pairwise-isometric subspaces.
Hence,

δ(X ) ≤ |SX |+ |X |
2

≤ 2m + 2m(2k + 1)

2
= 2m(k + 1).

The space Bm,k = 2mC2k+1 ×1 〈2m, ‖ · ‖〉 shows optimality.
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More on 1-homogeneous spaces

Corollary

For every n ∈ N+ we have ∆ω(n) = ∆2(n) = βn ≤ ∆1(n) ≤ n.

What more can we say about 1-homogeneous spaces?
Let X be a 1-homogeneous metric space X with n elements.

Proposition

If n = 2k + 1, then δ(X ) ≤ k + 1. Hence, ∆1(n) = ∆2(n) = βn for
every odd n.

Main ingredient in the proof: SX = {0} if n is odd.
The space D2n = Cn ×r 2 has 2n elements and δ(D2n) > β2n.

Corollary

We have ∆2(n) < ∆1(n) < n for even n that is not a power of two.
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Some other bounds

Proposition

The number of distances in a 1-homogeneous space X of
cardinality n = 2(2k + 1) with 2k + 1 prime is bounded from above
by 3k + 2. Hence, ∆1(n) = αn for such n.

We have an example showing that this bound is optimal too.

Proposition

We have ∆1(n) ≤ n− 2 for every n ≥ 7 that is not a power of two.
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n ∆2(n) ∆1(n) argument for ∆1 upper bound
1 1 1 power of two
2 2 2 power of two
3 2 2 odd
4 4 4 power of two
5 3 3 odd
6 4 5 two times odd prime
7 4 4 odd
8 8 8 power of two
9 5 5 odd
10 6 8 two times odd prime
11 6 6 odd
12 8 10 ∆1(n) ≤ n − 2
13 7 7 odd
14 8 11 two times odd prime
15 8 8 odd
16 16 16 power of two
17 9 9 odd
18 10 ≥ 14,≤ 16 ∆1(n) ≤ n − 2
19 10 10 odd
20 12 ≥ 16,≤ 18 ∆1(n) ≤ n − 2
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The End

Thank you for your attention!
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