## Category-theoretic Fraïssé theory: an overview

Adam Bartoš bartos@math.cas.cz

Institute of Mathematics, Czech Academy of Sciences

Conference on Generic Structures Będlewo, October 22–28, 2023

- Fraïssé-theoretic notions in the language of category theory
- "Common core" setup for countable discrete Fraïssé theory
  - synthesis of known results, mostly by Droste-Göbel and Kubiś
- Weak Fraïssé theory
  - KPT correspondence for weak Fraïssé categories (B., Bice, Dasilva Barbosa, Kubiś)
- Approximate Fraïssé theory
  - the pseudo-arc and pseudo-solenoids as metric Fraïssé limits (B., Kubiś)

## The language of category theory

- Categories will be denoted by  $\mathcal{K}, \mathcal{L}, \mathcal{C}, ...$
- Objects will be denoted by x, y, z, X, Y, Z, ...
- Morphisms will be denoted by  $f: x \to y, g: y \to z, g \circ f: x \to z, id_x, ...$
- We shall often consider a pair  $\langle \mathcal{K}, \mathcal{L} \rangle$  where  $\mathcal{K} \subseteq \mathcal{L}$  is a subcategory.
- A sequence  $\vec{x}$  in a category  $\mathcal{K}$  consists of a sequence  $\mathcal{K}$ -objects  $\langle x_n \rangle_{n \in \omega}$  and a coherent sequence of  $\mathcal{K}$ -maps  $\langle x_n^m : x_n \to x_m \rangle_{n \le m \in \omega}$ .

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$

A colimit of the sequence x
 is an object x<sub>∞</sub> together with an initial cone x
 <sup>∞</sup> = ⟨x<sub>n</sub><sup>∞</sup>: x<sub>n</sub> → x<sub>∞</sub>⟩.



#### The main example to keep in mind

Let L be a first-order language. Let  $\mathcal{L}$  be the category whose objects are all *L*-structures and whose morphisms are all embeddings.

• A sequence in  $\mathcal L$  is without loss of generality an  $\omega$ -chain

 $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$ 

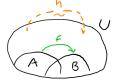
• Its colimit is the union  $A_{\infty} = \bigcup_{n \in \omega} A_n$ .

The language of category theory is flexible enough to cover:

- first-order structures and left-invertible embeddings,
- topological first-order structures and quotient maps,
- embedding-projection pairs,
- structures with relations as morphisms,
- a monoid as a category with a single object...

# (Ultra)homogeneity

Recall that a countable relational structure U is *ultrahomogeneous* if every isomorphism  $f: A \to B$  between finite substructures  $A, B \subseteq U$  can be extended to an automorphism  $h: U \to U$ .



$$U \xrightarrow{h} U$$

#### Definition

For a pair of categories  $\mathcal{K} \subseteq \mathcal{L}$  we say that an  $\mathcal{L}$ -object U is *homogeneous* in  $\langle \mathcal{K}, \mathcal{L} \rangle$  if for every  $\mathcal{K}$ -object x and every  $\mathcal{L}$ -maps  $f, g : x \to U$  there is an  $\mathcal{L}$ -automorphism  $h \colon U \to U$  such that  $h \circ g = f$ .



So a structure U is ultrahomogeneous if and only if it is homogeneous in  $\langle Age(U), \mathcal{L} \rangle$ .

# Extension property / injectivity

Recall that a countable relational structure U is *injective* or has the *extension property* if for every structures  $A \subseteq B \in Age(U)$  every embedding  $f: A \rightarrow U$  can be extended to an embedding  $g: B \rightarrow U$ .



#### Definition

For a pair of categories  $\mathcal{K} \subseteq \mathcal{L}$  we say that an  $\mathcal{L}$ -object U is *injective* / has the *extension property* in  $\langle \mathcal{K}, \mathcal{L} \rangle$  if for every  $\mathcal{L}$ -map  $f : x \to U$  and  $\mathcal{K}$ -map  $g : x \to y$  there is an  $\mathcal{L}$ -map  $h : y \to U$  such that  $h \circ g = f$ .



Recall that a structure U is *universal* for a class of structures  $\mathcal{F}$  if every  $X \in \mathcal{F}$  can be embedded to U.

#### Definition

For a pair of categories  $\mathcal{K} \subseteq \mathcal{L}$  we say that an  $\mathcal{L}$ -object U is *cofinal* in  $\langle \mathcal{K}, \mathcal{L} \rangle$  if for every  $\mathcal{K}$ -object x there is an  $\mathcal{L}$ -map  $f: x \to U$ .

Let  $\mathcal{K} \subseteq \mathcal{L}$  be categories, let U be an  $\mathcal{L}$ -object. We consider the properties:

- **1** *U* is homogeneous in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **2** U is injective / has the extension property in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **3** *U* is cofinal in  $\langle \mathcal{K}, \mathcal{L} \rangle$ .
- Always, if U is cofinal and homogeneous, then U is injective.
- Sometimes U is cofinal homogeneous iff U is cofinal injective.
- Sometimes such *U* is unique.
- Sometimes such U is cofinal for the whole  $\mathcal{L}$ .

If it is the case, then it makes sense to call U the *Fraïssé limit*.

A pair  $\langle \mathcal{K}, \mathcal{L} \rangle$  is called a *free sequential cocompletion* or just a "*free completion*" if  $\mathcal{L}$  arises from  $\mathcal{K}$  by freely adding colimits of  $\mathcal{K}$ -sequences.

- We will give a precise definition later.
- Free completion establishes a correspondence

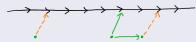
 $\mathcal{K}$ -sequences  $\leftrightarrow$   $\mathcal{L}$ -objects.

 This is the case in the classical setup when K is a class of finite structures and L is the class of their countable unions.

#### Definition

### A $\mathcal{K}$ -sequence $\vec{u}$ is *Fraïssé* if it is

- *cofinal*, i.e. for every *K*-object *x* there is a *K*-map *f* : *x* → *u<sub>n</sub>* for some *n* ∈ ω,
- *injective*, i.e. for every K-maps f: x → u<sub>n</sub> and g: x → y there is a K-map h: y → u<sub>m</sub> for some m ≥ n such that h ∘ g = u<sub>n</sub><sup>m</sup> ∘ f.



Note that the definition is analogous to the definition of cofinal and injective object in  $\langle \mathcal{K}, \mathcal{L} \rangle$ .

#### Theorem

Let  $\langle \mathcal{K}, \mathcal{L} \rangle$  be a free completion and let U be an  $\mathcal{L}$ -object. Then the following are equivalent.

**1** *U* is cofinal and homogeneous in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,

**2** *U* is cofinal and injective in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,

**3** U is the  $\mathcal{L}$ -colimit of a Fraïssé sequence in  $\mathcal{K}$ .

Moreover, such U is unique and cofinal in  $\mathcal{L}$ , and every  $\mathcal{K}$ -sequence with  $\mathcal{L}$ -colimit U is Fraïssé in  $\mathcal{K}$ .

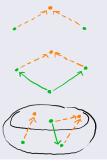
It follows that such U exists if and only if a Fraı̈ssé sequence exists in  $\mathcal{K}.$ 

## Existence

#### Theorem

Let  $\mathcal{K} \neq \emptyset$  be a category. There is a Fraïssé sequence in  $\mathcal{K}$  if and only if

- I K is directed (JEP), i.e. for every K-objects x, y there is a K-object z and K-maps f: x → z, g: y → z,
- 2 K has the amalgamation property (AP), i.e. for every K-maps f: x → y, g: x → z there are K-maps f': y → w, g': z → w such that f' ∘ f = g' ∘ g,



- 3  $\mathcal{K}$  has a countable *dominating subcategory*.
  - Often  ${\mathcal K}$  has an initial object and AP realized by one-point extensions.
- Adding the extra structure of *origin* and *transitions* leads to the notion of *abstract evolution scheme*, studied by Kubiś and Radecka.

# Free completion

### Definition

 $\langle \mathcal{K}, \mathcal{L} 
angle$  is a free completion if

(L1) every  $\mathcal{K}$ -sequence has an  $\mathcal{L}$ -colimit,

(L2) every  $\mathcal{L}$ -object is an  $\mathcal{L}$ -colimit of a  $\mathcal{K}$ -sequence,

for every  ${\cal K}\text{-sequence }\vec{x}$  and its  ${\cal L}\text{-colimit }\langle X_\infty,\vec{x}^\infty\rangle$  we have that

(F1) for every  $\mathcal{L}$ -map from a  $\mathcal{K}$ -object  $f: z \to X_{\infty}$  there is a  $\mathcal{K}$ -map  $g: z \to x_n$  for some n such that  $f = x_n^{\infty} \circ g$ ,

$$\rightarrow$$
  $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$ 

(F2) for every  $\mathcal{K}$ -maps  $f, g: z \to x_n$  such that  $x_n^{\infty} \circ f = x_n^{\infty} \circ g$ there is  $m \ge n$  such that  $x_n^m \circ f = x_n^m \circ g$ .

- (F2) is trivial if  $\mathcal{L}$  consists of monomorphisms.
- Given  $\mathcal{K}$ ,  $\mathcal{L}$  always exists and is essentially unique.
- Such  $\mathcal{L}$  has all colimits of sequences and has  $\mathcal{K}$  as a full subcategory consisting of a rich family of *finitely presentable objects*.

- Let L be a first-order language and let K and L be the categories of all finitely and countably generated L-structures, respectively, with all embeddings are morphisms. Then (K, L) is a free completion.
- Let ⟨𝒯,𝒯⟩ be a free completion. If 𝒯 ⊆ 𝒯 is a *full* subcategory and σ𝒯 ⊆ 𝒯 is the full subcategory of all 𝒯-colimits of 𝒯-sequences, then ⟨𝒯, σ𝒯⟩ is a free-completion.
- For a fixed *L*-structure X we may take *F* = Age(X). Then X is cofinal in (Age(X), σAge(X)), so X is homogeneous in (*K*, *L*) if and only if it is the Fraïssé limit of its age.

# Projective Fraïssé theory

- Let  $\mathcal{K}^{op}$  consists of nonempty finite sets and surjections.
- Then  $\mathcal{K}^{op}$  is essentially countable, directed, and has AP.
- A *K*-sequence is Fraïssé if and only if every point eventually splits.

Where to take the limit?

- For L<sup>op</sup> being all profinite sets and surjections, (K, L) is not a free completion and there is no cofinal object with the extension property.
- For  $\mathcal{L}^{op}$  being all profinite spaces (i.e. metrizable compact zero-dimensional) and continuous surjections,  $\langle \mathcal{K}, \mathcal{L} \rangle$  is a free completion, and  $2^{\omega}$  is the Fraïssé limit.

Projective Fraïssé theory (Irwin, Solecki)

 For L a relational first-order language, let L<sup>op</sup> be the category of all *topological L-structures* (profinite spaces with a closed interpretation of every relation) and *quotient maps*, and let K<sup>op</sup> be the full subcategory of finite L-structures. Then ⟨K, L⟩ is a free completion.

#### Theorem (characterization of the Fraïssé limit)

Let  $\langle \mathcal{K}, \mathcal{L} \rangle$  be a free completion and let U be an  $\mathcal{L}$ -object. Then the following are equivalent.

- **1** U is cofinal and homogeneous in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **2** *U* is cofinal and injective in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **3** U is the  $\mathcal{L}$ -colimit of a Fraïssé sequence in  $\mathcal{K}$ .

Moreover, such U is unique and cofinal in  $\mathcal{L}$ , and every  $\mathcal{K}$ -sequence with  $\mathcal{L}$ -colimit U is Fraïssé in  $\mathcal{K}$ .

#### Theorem (existence of a Fraïssé sequence)

Let  $\mathcal{K} \neq \emptyset$  be a category.  $\mathcal{K}$  has a Fraïssé sequence if and only if

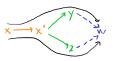
- **1**  $\mathcal{K}$  is directed,
- 2  ${\cal K}$  has the amalgamation property,
- 3  $\mathcal K$  has a countable dominating subcategory.

# Examples

|            | ${\cal K}$                       | ${\cal L}$                                                                             | U                      |
|------------|----------------------------------|----------------------------------------------------------------------------------------|------------------------|
| embeddings | finite linear orders             | countable linear orders                                                                | the rationals          |
|            | finite graphs                    | countable graphs                                                                       | Rado/random graph      |
|            | finite groups                    | locally finite countable groups                                                        | Hall's universal group |
|            | finite rational<br>metric spaces | countable rational<br>metric spaces                                                    | rational Urysohn space |
| quotients  | finite discrete<br>spaces        | zero-dimensional<br>metrizable compacta                                                | Cantor space           |
|            | finite discrete<br>linear graphs | zero-dimensional<br>metrizable compacta<br>with a special closed<br>symmetric relation | pseudo-arc prespace    |

 $\ldots$  sometimes we just don't have the full amalgamation property, but the theory still works.

• A  $\mathcal{K}$ -map  $e: x \to x'$  is called *amalgamable* if for every  $\mathcal{K}$ -maps  $f: x' \to y$ ,  $g: x' \to z$ there are  $\mathcal{K}$ -maps  $f': y \to w$  and  $g': z \to w$  such that  $f' \circ f \circ e = g' \circ g \circ e$ .



- A  $\mathcal{K}$ -object x is *amalgamable* if id<sub>x</sub> is amalgambable.
- K has the cofinal amalgamation property (CAP) if for every K-object x there is a K-map e: x → x' such that x' is amalgamable.
- *K* has the *weak amalgamation property* (WAP) if for every *K*-object *x* there is an amalgamable *K*-map *e*: *x* → *x*'.

(WAP) was introduced by Iwanow and later independently by Kechris and Rosendal.

For examples of herereditary classes with (WAP) and not (CAP) see Krawczyk–Kruckman–Kubiś–Panagiotopoulos.

# Weak Fraïssé theory

Throughout the theory we add "guardian arrows", e.g. U is weakly injective in ⟨K, L⟩ if for every L-map from a K-object f: x → U there is a K-map e: x → x' such that for every K-map g: x' → y there is an L-map h: y → U such that h ∘ g ∘ e = f.



• Then the theory covers more examples and is more stable under constructions.

### Connections with genericity

- The generic automorphism of the Fraïssé limit of  $\mathcal{K}$  is exactly the weak Fraïssé limit of the induced category of partial automorphisms  $\mathcal{K}_p$  (Kechris–Rosendal).
- The weak Fraïssé limit of (K, L) can be characterized by existence of the winning strategy in the *abstract* Banach-Mazur game played in K (Kubiś). Hence generic limit.

# Weak Fraïssé theory

#### Theorem (characterization of the weak Fraïssé limit)

Let  $\langle \mathcal{K}, \mathcal{L} \rangle$  be a free completion and let U be an  $\mathcal{L}$ -object. Then the following are equivalent.

- **1** U is cofinal and weakly homogeneous in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **2** *U* is cofinal and weakly injective in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **3** U is the  $\mathcal{L}$ -colimit of a weak Fraïssé sequence in  $\mathcal{K}$ .

Moreover, such U is unique and cofinal for  $\mathcal{L}$ -colimits of  $\mathcal{K}$ -sequences of amalgamamable maps, and every  $\mathcal{K}$ -sequence with  $\mathcal{L}$ -colimit U is weak Fraïssé in  $\mathcal{K}$ .

#### Theorem (existence of a weak Fraïssé sequence)

Let  $\mathcal{K} \neq \emptyset$  be a category.  $\mathcal{K}$  has a weak Fraïssé sequence iff

- **1**  $\mathcal{K}$  is directed,
- 2  ${\cal K}$  has the weak amalgamation property,
- 3  $\mathcal K$  has a countable weakly dominating subcategory.

# Induced topology and uniform structure

- A free completion ⟨𝔅, 𝔅⟩ induces a uniform structure on every homset 𝔅(𝑋, 𝑌).
- For every  $\mathcal{K}$ -object z and  $\mathcal{L}$ -map  $u \colon z \to X$  we put

$$f \approx_u g \iff f \circ u = g \circ u$$

for every  $f, g: X \rightarrow Y$ . Clasically this means that the maps agree on a given finite substructure.

• This defines a basis of a complete uniformity metrized by the complete ultrametric

$$d(f,g) < 1/n \iff f \circ x_n^\infty = g \circ x_n^\infty$$

for any fixed  $\mathcal{K}$ -sequence  $\vec{x}$  with  $\mathcal{L}$ -colimit  $\langle X, \vec{x}^{\infty} \rangle$ .

- This induces the topology of pointwise / uniform convergence in the classical / projective setup.
- Aut(X) ⊆ L(X, X) becomes a non-archimedean completely metrizable topological group.
- $\mathcal{L}(X, Y)$  and Aut(X) are Polish if  $\mathcal{K}$  is *locally countable*.

# Kechris-Pestov-Todorčević correspondence

- A locally finite category C has the Ramsey property if for every C-objects a, b and every k ∈ ω there is a C-object c such that for every coloring φ: C(a, c) → k there is a K-map e: b → c, such that φ is monochromatic on e ∘ C(a, b).

#### Theorem (B., Bice, Dasilva Barbosa, Kubiś)

Let  $\langle \mathcal{K}, \mathcal{L} \rangle$  be a free completion,  $\mathcal{K}$  a weak Fraïssé category, U the limit. Then the following are equivalent.

- **1** Aut(U) is extremely amenable.
- **2**  $\mathcal{K}$  has the weak Ramsey property.

## Approximate Fraïssé theory

Consider the category  $\ensuremath{\mathcal{K}}$  of metric compact spaces and continuous maps.

• Every  $\mathcal{K}(X, Y)$  can be endowed with the uniform distance

$$d(f,g) = \sup_{x \in X} d_Y(f(x),g(x)).$$

- Let us write  $f \approx_{\varepsilon} g$  if  $d(f,g) < \varepsilon$ .
- **1** For every  $\mathcal{K}$ -map  $h: Z \to X$  we have

$$d(f \circ h, g \circ h) \leq d(f, g).$$

2 For every *K*-map *h*: Y → Z and ε > 0 there is δ > 0 such that for every *K*-object X and every *K*-maps *f*, *g*: X → Y we have

$$h \circ f \approx_{\varepsilon} h \circ g$$
 if  $f \approx_{\delta} g$ .

3 If h is non-expansive, then also

$$d(h \circ f, h \circ g) \leq d(f, g).$$

## Approximate Fraïssé theory

### Definition

An *MU-category* is a category  $\mathcal{K}$  such that every homset  $\mathcal{K}(X, Y)$  is a metric space satisfying the following.

**1** For every  $h: X \to Y$  and  $f, g: Y \to Z$  we have

 $d(f \circ h, g \circ h) \leq d(f, g).$ 

**2** For every  $h: Y \to Z$  and  $\varepsilon > 0$  there is  $\delta > 0$  such that h is  $\langle \varepsilon, \delta \rangle$ -continuous, i.e. for every  $\mathcal{K}$ -object X and  $\mathcal{K}$ -maps  $f, g: X \to Y$  we have

$$h \circ f \approx_{\varepsilon} h \circ g$$
 if  $f \approx_{\delta} g$ .

 ${\mathcal K}$  is called *metric-enriched* if additionally every  $h\colon Y\to Z$  is

**3** *non-expansive*, i.e. for every  $f, g: X \to Y$  we have

 $d(h \circ f, h \circ g) \leq d(f, g).$ 

Every category  $\mathcal{K}$  can be viewed as a *discrete MU-category* when endowed with the 0-1 metric.

## Approximate Fraïssé theory

- Now throughout the theory we add epsilons (and we switch to the projective convention for convenience).
- The amalgamation property now means: for every  $\mathcal{K}$ -maps  $f: Z \leftarrow X, g: Z \leftarrow Y$  and every  $\varepsilon > 0$  there are  $\mathcal{K}$ -maps  $f': X \leftarrow W$  and  $g': Y \leftarrow W$  such that  $f \circ f' \approx_{\varepsilon} g \circ g'$ .
- U is homogeneous in  $\langle \mathcal{K}, \mathcal{L} \rangle$  if for every  $\mathcal{K}$ -object X,  $\mathcal{L}$ -maps  $f, g: X \leftarrow U$ , and  $\varepsilon > 0$  there is an automorphism  $h: U \leftarrow U$  such that  $f \approx_{\varepsilon} g \circ h$ .
- For a discrete MU-category, the definitions reduce to the basic ones.
- Our motivation: Irwin and Solecki characterized the *pseudo-arc* by a condition that becomes the actual homogeneity in our setup.

## Free MU-completion

#### Definition

- A pair of MU-categories  $\langle \mathcal{K}, \mathcal{L} \rangle$  is a *free MU-completion* if
- (L1) every *K*-sequence has an *L*-limit, and every *L*-homset is a complete metric space,
- (L2) every  $\mathcal{L}$ -object is an  $\mathcal{L}$ -limit of a  $\mathcal{K}$ -sequence,
- (F1) for every  $\mathcal{K}$ -object z,  $\mathcal{K}$ -sequence  $\vec{x}$  with  $\mathcal{L}$ -limit  $\langle X_{\infty}, \vec{x}_{\infty} \rangle$ ,  $\mathcal{L}$ -map  $f: z \leftarrow X_{\infty}$  and  $\varepsilon > 0$  there is a  $\mathcal{K}$ -map  $g: z \leftarrow z_n$  for some n such that  $g \circ x_{\infty}^n \approx_{\varepsilon} f$ ,
- (F2) for every  $\mathcal{K}$ -object z and  $\varepsilon > 0$  there is  $\delta > 0$  such that for every  $\mathcal{K}$ -sequence  $\vec{x}$  with  $\mathcal{L}$ -limit  $\langle X_{\infty}, \vec{x}_{\infty} \rangle$  and  $\mathcal{K}$ -maps  $f, g: z \leftarrow x_n$  such that  $f \circ x_{\infty}^n \approx_{\delta} g \circ x_{\infty}^n$  there is  $m \ge n$  with  $f \circ x_m^n \approx_{\varepsilon} g \circ x_m^n$ ,
- (C) for every  $\mathcal{K}$ -sequence  $\vec{x}$  with  $\mathcal{L}$ -limit  $\langle X_{\infty}, \vec{x}_{\infty} \rangle$  and  $\varepsilon > 0$  there is  $n \in \omega$  and  $\delta > 0$  such that for every  $\mathcal{L}$ -maps  $f, g \colon X_{\infty} \leftarrow Y$  with  $x_{\infty}^{n} \circ f \approx_{\delta} x_{\infty}^{n} \circ g$  we have  $f \approx_{\varepsilon} g$ .

If  $\mathcal{K}$  is a discrete MU-category, then  $\langle \mathcal{K}, \mathcal{L} \rangle$  is a free MU-completion iff  $\langle \mathcal{K}, \mathcal{L} \rangle$  is a free completion and  $\mathcal{L}$  is endowed with the induced uniformity.

### Theorem (characterization of the Fraïssé limit)

Let  $\langle \mathcal{K}, \mathcal{L} \rangle$  be a free MU-completion and let U be an  $\mathcal{L}$ -object. Then the following are equivalent.

- **1** *U* is cofinal and homogeneous in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **2** *U* is cofinal and injective in  $\langle \mathcal{K}, \mathcal{L} \rangle$ ,
- **3** U is the  $\mathcal{L}$ -limit of a Fraïssé sequence in  $\mathcal{K}$ .

Moreover, such U is unique and cofinal and homogeneous in  $\mathcal{L}$ , and every  $\mathcal{K}$ -sequence with  $\mathcal{L}$ -colimit U is Fraïssé in  $\mathcal{K}$ .

### Theorem (existence of a Fraïssé sequence)

Let  $\mathcal{K} \neq \emptyset$  be an MU-category.  $\mathcal{K}$  has a Fraïssé sequence if and only if

- **1**  $\mathcal{K}$  is directed,
- 2  ${\cal K}$  has the amalgamation property,
- 3  ${\cal K}$  has a countable dominating subcategory.

### Pseudo-arc and pseudo-solenoids

- Let *I* / *S* be the category of all continuous surjections of the unit interval / unit circle and let *σI* / *σS* be the category of all *arc-like* / *circle-like* continua and all continuous surjections.
- For a set of primes P let  $S_P \subseteq S$  be the subcategory of all maps whose *degree* uses only primes from P, and let  $\sigma S_P$  be its  $\sigma$ -closure in  $\sigma S$ .

#### Theorem (B., Kubiś)

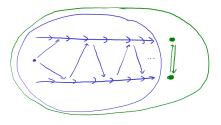
- $\begin{array}{c} \blacksquare \quad \langle \mathcal{I}, \sigma \mathcal{I} \rangle \text{ is a free MU-completion, } \mathcal{I} \text{ is a Fraïssé MU-category,} \\ \text{ and the } \underline{\textit{pseudo-arc}} \text{ is the Fraïssé limit.} \end{array}$
- 2 (S<sub>P</sub>, σS<sub>P</sub>) is a free MU-completion, S<sub>P</sub> is a Fraïssé MU-category, and the *P*-adic pseudo-solenoid is the Fraïssé limit.

A. Bartoš, T. Bice, K. Dasilva Barbosa, W. Kubiś. The weak Ramsey property and extreme amenability. arXiv:2110.01694

A. Bartoš, W. Kubiś.

Hereditarily indecomposable continua as generic mathematical structures.

arXiv:2208.06886



Thank you!