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Posets vs Compacta

I Various dualities exist between certain posets and compacta:

Boolean Algebras ↔ T2 0-Dim Compacta (Stone 1936)

Separative Lattices ↔ T1 Compacta (Wallman 1938)

Compingent Lattices ↔ T2 Compacta (Shirota 1952)

Continuous Frames ↔ Sober Compacta (Hofmann-Lawson 1978)

Proximity Lattices ↔ Stable Compacta (Jung-Sünderhauf 1996)

Entailment Relations ↔ Stable Compacta (Vickers 2004)

Semilattices ↔ T2 0-Dim Compacta (Exel 2008)

(0-dim = 0-dimensional ⇔ clopen sets form a basis)

I Unified/Extended together with Starling and Kubís (2019-22).

I Interesting but not so useful for building generic continua, e.g.
the pseudoarc, Lelek fan, Menger curve, etc.

I More promising avenue for constructions – trees or tree-like
posets as considered in set theory and topological dynamics.
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Trees and their Spectra

I Take a poset (P,≤). Each p ∈ P defines a principal filter

p≤ = {q ∈ P : p ≤ q}.

I nth cone of P is the union of principal filters of size ≤ n + 1,

Pn = {p ∈ P : |p≤| ≤ n + 1}.

Definition
P is a tree if principal filters are chains (⇔ linearly ordered).
P is an ω-tree if principal filters and cones are also finite.

I The spectrum of an ω-tree P consists of branches

SP = {S ⊆ P : S is a maximal chain}

which we topologise via the basis (p∈)p∈P where

p∈ = {S ∈ SP : p ∈ S}.

I Then SP is a 0-dimensional metrisable compactum.
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0-Dimensional Metrisable Compacta from ω-Trees

Proposition

Any 0-dimensional metric compactum is the spectrum of an ω-tree.

Proof.

I Take a 0-dimensional metric compactum X .

I Let P0 be a clopen (finite) partition of X .

I Let P1 be a finer clopen partition of X with

max{diam(p) : p ∈ P1} < min{diam(p) : p ∈ P0 and |p| > 1}.

I Continuing in this way we obtain an ω-tree

P =
⋃
k∈ω

Pk with nth cone Pn =
n⋃

k=0

Pk .

I Points x ∈ X correspond to branches Sx = {p ∈ P : x ∈ p}.
I Moreover, x 7→ Sx is a homeomorphism from X onto SP.
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Levels vs Covers

I So ω-trees P correspond to ‘tree-bases’ (p∈)p∈P of
0-dimensional metrisable compacta SP.

I Order structure of P reflected by inclusion on the basis, i.e.

p ≤ q ⇒ p∈ ⊆ q∈.

I Covers of SP come from ‘levels’ of P.

Definition
Minimal elements of the nth cone Pn form the nth level Pn, i.e.

Pn = {p ∈ Pn : @q ∈ Pn (q < p)}.

I Every level L ⊆ P yields a cover (p∈)p∈L of SP.

I Same applies to any C ⊆ P refined by some level L ⊆ P, i.e.

L refines C ⇔ ∀l ∈ L ∃c ∈ C (l ≤ c).

I In fact this characterises C ⊆ P forming covers (p∈)p∈C of SP.
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Extending to T1 Compacta

I Goal: Extend to (non-0-dim) 2nd countable T1 compacta.

I i.e. show ‘tree-like posets’ ↔ ‘tree-like bases’ of such X .

I e.g. [0, 1] has a tree-like dyadic basis given by

P0 = {[0, 1]}
P1 = {[0, 12), (14 ,

3
4), (12 , 1]}

P2 = {[0, 14), (18 ,
3
8), (14 ,

1
2), (38 ,

5
8), (12 ,

3
4), (58 ,

7
8), (34 , 1]}

...

I To make this precise we should answer some basic questions.
I Any basis P of a T1 compactum X forms a poset (P,⊆).

1. What kind of ‘branches’ of (P,⊆) correspond to points x ∈ X?
2. What kind of ‘levels’ of (P,⊆) cover X?

I Note every open cover contains neighbourhoods of any x ∈ X .

I Suggests defining ‘branches’ to select elements from ‘levels’.
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I Suggests defining ‘branches’ to select elements from ‘levels’.



Extending to T1 Compacta

I Goal: Extend to (non-0-dim) 2nd countable T1 compacta.

I i.e. show ‘tree-like posets’ ↔ ‘tree-like bases’ of such X .

I e.g. [0, 1] has a tree-like dyadic basis given by

P0 = {[0, 1]}
P1 = {[0, 12), (14 ,

3
4), (12 , 1]}

P2 = {[0, 14), (18 ,
3
8), (14 ,

1
2), (38 ,

5
8), (12 ,

3
4), (58 ,

7
8), (34 , 1]}

...

I To make this precise we should answer some basic questions.
I Any basis P of a T1 compactum X forms a poset (P,⊆).

1. What kind of ‘branches’ of (P,⊆) correspond to points x ∈ X?
2. What kind of ‘levels’ of (P,⊆) cover X?

I Note every open cover contains neighbourhoods of any x ∈ X .

I Suggests defining ‘branches’ to select elements from ‘levels’.



Extending to T1 Compacta

I Goal: Extend to (non-0-dim) 2nd countable T1 compacta.

I i.e. show ‘tree-like posets’ ↔ ‘tree-like bases’ of such X .

I e.g. [0, 1] has a tree-like dyadic basis given by

P0 = {[0, 1]}
P1 = {[0, 12), (14 ,

3
4), (12 , 1]}

P2 = {[0, 14), (18 ,
3
8), (14 ,

1
2), (38 ,

5
8), (12 ,

3
4), (58 ,

7
8), (34 , 1]}

...

I To make this precise we should answer some basic questions.
I Any basis P of a T1 compactum X forms a poset (P,⊆).

1. What kind of ‘branches’ of (P,⊆) correspond to points x ∈ X?

2. What kind of ‘levels’ of (P,⊆) cover X?

I Note every open cover contains neighbourhoods of any x ∈ X .

I Suggests defining ‘branches’ to select elements from ‘levels’.



Extending to T1 Compacta

I Goal: Extend to (non-0-dim) 2nd countable T1 compacta.

I i.e. show ‘tree-like posets’ ↔ ‘tree-like bases’ of such X .

I e.g. [0, 1] has a tree-like dyadic basis given by

P0 = {[0, 1]}
P1 = {[0, 12), (14 ,

3
4), (12 , 1]}

P2 = {[0, 14), (18 ,
3
8), (14 ,

1
2), (38 ,

5
8), (12 ,

3
4), (58 ,

7
8), (34 , 1]}

...

I To make this precise we should answer some basic questions.
I Any basis P of a T1 compactum X forms a poset (P,⊆).

1. What kind of ‘branches’ of (P,⊆) correspond to points x ∈ X?
2. What kind of ‘levels’ of (P,⊆) cover X?

I Note every open cover contains neighbourhoods of any x ∈ X .

I Suggests defining ‘branches’ to select elements from ‘levels’.



Extending to T1 Compacta

I Goal: Extend to (non-0-dim) 2nd countable T1 compacta.

I i.e. show ‘tree-like posets’ ↔ ‘tree-like bases’ of such X .

I e.g. [0, 1] has a tree-like dyadic basis given by

P0 = {[0, 1]}
P1 = {[0, 12), (14 ,

3
4), (12 , 1]}

P2 = {[0, 14), (18 ,
3
8), (14 ,

1
2), (38 ,

5
8), (12 ,

3
4), (58 ,

7
8), (34 , 1]}

...

I To make this precise we should answer some basic questions.
I Any basis P of a T1 compactum X forms a poset (P,⊆).

1. What kind of ‘branches’ of (P,⊆) correspond to points x ∈ X?
2. What kind of ‘levels’ of (P,⊆) cover X?

I Note every open cover contains neighbourhoods of any x ∈ X .

I Suggests defining ‘branches’ to select elements from ‘levels’.



Extending to T1 Compacta

I Goal: Extend to (non-0-dim) 2nd countable T1 compacta.

I i.e. show ‘tree-like posets’ ↔ ‘tree-like bases’ of such X .

I e.g. [0, 1] has a tree-like dyadic basis given by

P0 = {[0, 1]}
P1 = {[0, 12), (14 ,

3
4), (12 , 1]}

P2 = {[0, 14), (18 ,
3
8), (14 ,

1
2), (38 ,

5
8), (12 ,

3
4), (58 ,

7
8), (34 , 1]}

...

I To make this precise we should answer some basic questions.
I Any basis P of a T1 compactum X forms a poset (P,⊆).

1. What kind of ‘branches’ of (P,⊆) correspond to points x ∈ X?
2. What kind of ‘levels’ of (P,⊆) cover X?

I Note every open cover contains neighbourhoods of any x ∈ X .

I Suggests defining ‘branches’ to select elements from ‘levels’.



Bands and Caps

Definition
Finite B ⊆ P is a band if every p ∈ P is comparable to some b ∈ B.
We call C ⊆ P a cap if it is refined by some band.

I If P is an ω-tree then every level is a band. In fact, levels are
coinitial (w.r.t. refinement) among bands so, for C ⊆ P,

C is a cap ⇔ C is refined by a level ⇔ (c∈)c∈C covers SP.

Proposition

If P is a basis of non-empty open sets of a T1 compactum X
ordered by inclusion ⊆ then every cap C of P is a cover of X .

Proof.

I C is refined by a band B ⊆ P. Suffices to show X =
⋃
B.

I Say y ∈ X \
⋃
B. For each b ∈ B, take xb ∈ B.

I N = X \ {xb : b ∈ B} is a neighbourhood of y , as X is T1.
I As P is a basis, we have q ∈ P with y ∈ q ⊆ N.
I For each b ∈ B, note xb ∈ b \ q and hence b * q.
I But also y ∈ q \ b and hence q * b, a contradiction.
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Cap-Bases

I But not all covers of X have to be caps of a basis P.

I E.g. if P is the basis of all clopens of the Cantor space X then
the only bands and caps are trivial (⇔ containing X itself).

Definition
A basis P of X is a cap-basis if every cover C ⊆ P is a cap.

Proposition

Every second countable T1 compactum has a cap-basis.

Proof.

I Take a countable basis P.
I Then the finite covers C ⊆ P are also countable.
I Pick covers C0 refined by C1 refined by C2 etc. that are coinitial

(w.r.t. refinement) among all finite open covers.
I Then P =

⋃
k∈ω Ck forms a cap-basis.

I The P above turns out to be quite ‘tree-like’...
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ω-Posets

I Take a poset P. The rank of any q ∈ P is given by

r(q) = sup{|C | : C is a chain in q<}.

I The nth cone of P is given by Pn = {q ∈ P : r(q) ≤ n}.

Definition
P is an ω-poset if all ranks and cones are finite.

I Previous proof shows every 2nd countable T1 compactum has
an ω-cap-basis P, i.e. a cap-basis s.t. (P,⊆) is an ω-poset.

Proposition (Bartoš-B.-Vignati 2023)

If P = {pn : n ∈ ω} is a basis of a metric compactum X then

P is an ω-cap-basis ⇔ diam(pn)→ 0.
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Graded ω-Posets

Definition
An ω-poset P is graded if maximal chains in principal filters have
the same size, i.e. |C | = r(q), for every maximal chain C ⊆ q<.

I Previously constructed ω-cap-bases may not be graded, e.g.

[0, 34) (14 , 1]

[0, 23) (13 , 1]

[0, 12) (14 ,
2
3) (13 ,

3
4) (12 , 1]

I Nevertheless, the proof can be modified to make them graded.
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Every second countable T1 compactum has a graded ω-cap-basis.
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Theorem (Bartoš-B.-Vignati 2023)

Every second countable T1 compactum has a graded ω-cap-basis.



Graded ω-Posets

Definition
An ω-poset P is graded if maximal chains in principal filters have
the same size, i.e. |C | = r(q), for every maximal chain C ⊆ q<.

I Previously constructed ω-cap-bases may not be graded, e.g.

[0, 34) (14 , 1]

[0, 23) (13 , 1]

[0, 12) (14 ,
2
3) (13 ,

3
4) (12 , 1]

I Nevertheless, the proof can be modified to make them graded.
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Spectra

I Take an ω-poset P. Call S ⊆ P a selector if it selects at least
one element from each cap C , i.e. S ∩ C 6= ∅. Equivalently,

S is a selector ⇔ P \ S is not a cap.

I Points ≈ neighbourhood filters ≈ filter selectors? Not quite –
filters can converge points outside their intersection.

I We instead define the spectrum of P to be

SP = {S ⊆ P : S is a minimal selector},

again with the topology generated by (p∈)p∈P where

p∈ = {S ∈ SP : p ∈ S}.

I All minimal selectors are filters so (p∈)p∈P is a basis and

p ≤ q ⇒ p∈ ⊆ q∈.

I In fact, (p∈)p∈P is an ω-cap-basis of SP.
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Duality

Theorem (Bartoš-B.-Vignati 2023)

If P is an ω-cap-basis of a T1 compactum X then

x 7→ Px = {q ∈ P : x ∈ q}

is a homeomorphism from X onto SP.

Corollary

Every 2nd countable T1 compactum is the spectrum of an ω-poset.

I Continuous φ : SP→ SQ encoded by @ ⊆ P×Q given by

p @ q ⇔ φ[p] ⊆ q.

I In this way we obtain a duality between appropriate categories
of ω-posets and metrisable compacta.
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Stars

I When is SP Hausdorff/regular/normal/metrisable?

I Define the star of q ∈ P within C ⊆ P by

Cq = {c ∈ C : ∃p ∈ P (p ≤ c , q)}

I Define the star-below relation C on P by

p C q ⇔ ∃ cap C (Cp ≤ q).

I This amounts to closed-containment in the spectrum, i.e.

p C q ⇒ cl(p∈) ⊆ q∈.

I We say C star-refines D if ∀c ∈ C ∃d ∈ D (c C d).

I We call P regular if every cap is star-refined by another cap.

Theorem (Bartoš-B.-Vignati 2023)

If P is a regular ω-poset then SP is a regular compactum.

I Converse also holds under a mild ‘primeness’ condition on P.
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Building Graded ω-Posets

I Graded posets can be built from relations between finite sets,
e.g. edge-preserving relations between finite graphs.

I Edges in the graph then correspond to overlaps of open sets.
I The graphs thus specify the ‘shape’ of the open covers.
I This can be formalised as forming posets from sequences of

relational morphisms in specific subcategories of graphs.

subcategory → Fräıssé sequence → ω-poset → compactum

discrete graphs with surjective functions → Cantor space

path graphs with monotone relations → unit interval

path graphs with surjective relations → pseudoarc

fan graphs with spoke-monotone relations → the Lelek fan

connected graphs with monotone relations → the Menger curve

I Like (Irwin-Solecki 2006) and (Debski-Tymchatyn 2018) but
they only consider functional morphisms. To obtain the
desired space they also have to identify points of a ‘pre-space’.
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