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Monadic Second-Order Logic

Monadic Second-Order Logic (MSO): extension of first-order logic by
(existential and universal) quantification over subsets.

∀M1∃M2∀ · · · ∀x∃y∀ · · ·φ

Example 1. 3-colorability of a graph (V ;E) can be expressed by

∃R,G,B. ∀x , y :
(
R(x)∨ G(x)∨ B(x)

)
∧

(
E(x , y)⇒ ¬

(
R(x)∧R(y)

∨ G(x)∧G(y)

∨ B(x)∧B(y)
))

Example 2. Digraph acyclicity can be expressed by

∀X 6= ∅ ∃x ∈ X ∀y ∈ X : ¬E(x , y).

×

Observation. Both examples are monotone.
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Goal
Φ: monotone MSO τ-sentence.

Want to understand the computational complexity of the following problem:
Given: finite τ-structure A.
Question: A |= τ?

Examples.
3-colorability: NP-complete.

Digraph acyclicity: in P.

×
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Constraint Satisfaction Problems

τ: a finite relational signature.
B = (B;R1, . . . ,Rl): a τ-structure. (‘template’)
CSP(B): class of all finite τ-structures with a homomorphism to B.

CSP(B)

Input: A finite τ-structure A.

Question: Is there a homomorphism from A to B?
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Constraint Satisfaction Problems
τ: a finite relational signature.
B = (B;R1, . . . ,Rl): a τ-structure. (‘template’)
CSP(B): class of all finite τ-structures with a homomorphism to B.

CSP(B)

Input: A finite τ-structure A.

Question: Is there a homomorphism from A to B?

Further examples:

CSP(Q;<): digraph acyclicity.

CSP(Q;Betw) where Betw =
{
(x , y , z) | x < y < z ∨ z < y < x

}
:

the Betweenness Problem, NP-complete.
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MSO Expressivity

Observation. If B is a finite structure, then CSP(B) is in MSO.

Questions:

Is CSP(Q;Betw) in MSO?

Is CSP(Z; succ) where succ := {(x , y) | y = x + 1} in MSO?

Facts:

Büchi’s theorem: Subsets of {0,1}<ω can be defined in MSO
if and only if they are regular.

Courcelles’s theorem: MSO sentences can be evaluated in polynomial
time on classes of structures of bounded treewidth.
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CSPs in MSO

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ-structures equals CSP(B) for some
(countable) structure B if and only if

C is closed under disjoint unions, and

C is monotone: the complement of C is closed under homomorphisms.

Theorem (B.+Knäuer+Rudolph’21).

For every monotone MSO sentence Φ there exists a finite set of ω-categorical
structures B1, . . . ,Bn such that{

A finite | A |= Φ
}
= CSP(B1) ∪ · · · ∪ CSP(Bn)

In particular:
every CSP in MSO equals CSP(B) for an ω-categorical structure B.

Generic Structures for MSO Manuel Bodirsky 7



CSPs in MSO

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ-structures equals CSP(B) for some
(countable) structure B if and only if

C is closed under disjoint unions, and

C is monotone: the complement of C is closed under homomorphisms.
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Countably Categorical Structures

A structure A is ω-categorical if all countable models of Th(A) are isomorphic.

Thm (Ryll-Nardzewski): A countable structure A is ω-categorical
if and only if Aut(A) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

Remark 1. Every ω-categorical structure B has an ω-categorical model
companion, which is unique up to isomorphism, and generic for Age(B).

Remark 2. If A is ω-categorical, then
the complexity of CSP(A) only depends on

the set Pol(A) of polymorphisms of A (B.+Nešetřil’03);

Pol(A) as a topological clone (B.+Pinsker’15).
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Pol(A) as a topological clone (B.+Pinsker’15).

Generic Structures for MSO Manuel Bodirsky 8



Countably Categorical Structures

A structure A is ω-categorical if all countable models of Th(A) are isomorphic.

Thm (Ryll-Nardzewski): A countable structure A is ω-categorical
if and only if Aut(A) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

Remark 1. Every ω-categorical structure B has an ω-categorical model
companion, which is unique up to isomorphism, and generic for Age(B).

Remark 2. If A is ω-categorical, then
the complexity of CSP(A) only depends on

the set Pol(A) of polymorphisms of A (B.+Nešetřil’03);
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Simpler Case: FO instead of MSO

φ: first-order sentence.
C: class of finite models of φ.

Theorem (Rossmann’08). If C is closed under homomorphisms,
then φ is equivalent to an existential positive sentence.
That is, to a finite disjunction of primitive positive sentences,
i.e., sentences of the form

∃x1, . . . , xn(ψ1 ∧ · · ·∧ψm)

for ψ1, . . . , ψm atomic.

Reformulation. If C is monotone, then there exists a finite set of finite
structures F such that C = Forb(F) where

Forb(F) :=
{
A finite | no structure in F has homomorphism to A

}
.
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then φ is equivalent to an existential positive sentence.
That is, to a finite disjunction of primitive positive sentences,
i.e., sentences of the form

∃x1, . . . , xn(ψ1 ∧ · · ·∧ψm)

for ψ1, . . . , ψm atomic.

Reformulation. If C is monotone, then there exists a finite set of finite
structures F such that C = Forb(F) where

Forb(F) :=
{
A finite | no structure in F has homomorphism to A

}
.
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Cherlin-Shelah-Shi

Theorem (Cherlin+Shelah+Shi’99). Let F be a finite set of finite connected
structures. Then there exists an ω-categorical model-complete structure B

such that A ↪→ B if and only if no structure in F has a homomorphism to A.

Note. B is up to isomorphism unique.

Final step: If F contains structures that are not connected, find finitely many
finite sets of finite connected structures F1, . . . ,Fn such that

Forb(F) = Forb(F1) ∪ · · · ∪ Forb(Fn).

Combining all this:
Corollary. There exists a finite set of ω-categorical structures B1, . . . ,Bn

such that
C = CSP(B1) ∪ · · · ∪ CSP(Bn).
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Proof, General Case

Φ: MSO sentence.
C: class of all finite models of Φ.

Assume C is monotone and closed under disjoint unions.

Use:

A necessary and sufficient condition for the existence of an ω-categorical
limit structure of B.+Hils+Martin’14.

Quantifier-rank for MSO.
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Primitive Positive Formulas

φ1(x1, . . . , xn) and φ2(x1, . . . , xn): primitive positive τ-formulas.
Define φ1 ∼Cn φ2 if for all pp τ-formulas ψ(x1, . . . , xn), we have

φ1(x1, . . . , xn)∧ψ(x1, . . . , xn) satisfiable in C

if and only if

φ2(x1, . . . , xn)∧ψ(x1, . . . , xn) satisfiable in C.

An equivalence relation.
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Existence of ω-categorical templates

Theorem (B.+Hils+Martin’14). Let C be a class of finite structures which is

closed under disjoint unions and

whose complement is closed under homomorphisms.

Then there exists an ω-categorical structure B such that CSP(B) = C
if and only if ∼Cn has finite index for every n ∈ N.

Question. Which of the following CSPs can be formulated with an
ω-categorical template?

CSP(Z;<)?
Yes, equals CSP(Q;<).

CSP(Z; succ) where succ := {(x , y) | y = x + 1}?
No, ∼CSP(Z;succ)

2 has infinite index.
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MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.

A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.

A 'MSO
q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



MSO Quantifier Rank

Quantifier-rank of Φ: maximal number of nested (FO or SO) quantifiers in Φ.
A,B: τ-structures.
A 'MSO

q B: A and B satisfy the same quantifier rank q MSO sentences.

Lemma ∼MSO
q is an equivalence relation with finite index.

φ(x1, . . . , xn): a primitive positive τ-formula.
Sφ: the τ ∪ {c1, . . . , cn}-structure whose elements are the vertices of φ,
whose relations are the ones prescribed by φ,
and setting cSφ

i := xi .

Theorem. If Sφ 'GSO
q Sψ then φ ∼Cn ψ.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals CSP(B) for an ω-categorical structure.
�

Corollary. CSP(Z; succ) is not expressible in MSO.

Generic Structures for MSO Manuel Bodirsky 14



Remarks

For every CSP C in MSO there exists a model complete ω-categorical
structure B such that Age(B) = C, and B is unique up to isomorphism.

If C can be described by a monotone MSO sentence which is not a CSP,
extra work is needed to write C as

CSP(B1) ∪ · · · ∪ CSP(Bn).
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Example

Consider the following MSO sentence Φ:

∀X ((∃x .X (x))⇒ ∃x , y ∈ X ∀z ∈ X
(
¬E(x , z)∨ ¬E(y , z)

)

G

xX
y z

A finite digraph does not satisfy Φ
if there is a non-empty subset X of vertices
such that for any x , y ∈ X
there exists z ∈ X such that (x , z), (y , z) ∈ E .

Expl. Wi 6|= Φ for every i ≥ 2.

W6
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Guarded Second-Order Logic

Grädel+Hirsch+Otto’02:
two ways to define Guarded Second-Order Logic (GSO).

Definition. Guarded first-order τ-formulas are defined inductively:

1 atomic τ-formulas are guarded;

2 if φ and ψ are guarded τ-formulas, then so are φ∧ψ, φ∨ψ, and ¬φ.

3 if ψ(�x , �y) is a guarded τ-formula and α(�x , �y) is an atomic τ-formula where
every variable from �x , �y appears (‘guard’), then

∃�y
(
α(�x , �y)∧ψ(�x , �y)

)
and

∀�y
(
α(�x , �y)⇒ ψ(�x , �y)

)
are guarded τ-formulas.

GSO: additionally allow (unrestricted) second-order quantification.

Generic Structures for MSO Manuel Bodirsky 17



Guarded Second-Order Logic
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3 if ψ(�x , �y) is a guarded τ-formula and α(�x , �y) is an atomic τ-formula where
every variable from �x , �y appears (‘guard’), then

∃�y
(
α(�x , �y)∧ψ(�x , �y)

)
and

∀�y
(
α(�x , �y)⇒ ψ(�x , �y)

)
are guarded τ-formulas.

GSO: additionally allow (unrestricted) second-order quantification.
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GSO Examples

Examples.

Digraph acyclicity:

∀X 6= ∅ ∃x ∈ X ∀y ∈ X : ¬E(x , y).

Note: formulas with one free variable are always guarded,
because ∃x .ψ(x) is equivalent to ∃x(x = x ⇒ ψ(x)).

All of MSO!

GSO sentence for CSP(Q;Betw):

∃L ∀x , y , z
(
Betw(x , y , z)⇒ ((L(x , y)∧ L(y , z))∨ (L(z, y)∧ L(y , x))

∧ L is acyclic︸ ︷︷ ︸
in MSO

)
.
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GSO, second definition

τ: finite relational signature.

Definition. Let B be a relational τ-structure.

(t1, . . . , tn) ∈ Bn guarded in B if there exists atomic τ-formula and
b1, . . . ,bk ∈ B such that B |= φ(b1, . . . ,bk ) and t1, . . . , tn ∈ {b1, . . . ,bk }.

R ⊆ Bn guarded if all tuples in R are guarded.

‘Guarded semantics’: If Φ is a second-order sentence, then B |=g Φ if all
second-order quantifiers in Φ are evaluated over guarded relations only.

Theorem (Grädel+Hirsch+Otto’02). GSO is equally expressive as
second-order logic with guarded semantics.

Theorem (B.+Knäuer+Rudolph’21).

For every monotone GSO sentence Φ there exists a finite set of ω-categorical
structures B1, . . . ,Bn such that{

A finite | A |= Φ
}
= CSP(B1) ∪ · · · ∪ CSP(Bn)
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Theorem (B.+Knäuer+Rudolph’21).

For every monotone GSO sentence Φ there exists a finite set of ω-categorical
structures B1, . . . ,Bn such that{

A finite | A |= Φ
}
= CSP(B1) ∪ · · · ∪ CSP(Bn)

Generic Structures for MSO Manuel Bodirsky 19



Summary and Open Problems

Every CSP in MSO can be formulated as the CSP for an ω-categorical
structure B.

Same for GSO instead of MSO.

A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.

Complexity of such problems determined by Pol(B).

Questions:

1 Are all CSPs in MSO in P, NP-hard, or coNP-hard?

2 C: class of finite structures that can be expressed in MSO.
C is closed under homomorphisms
if and only if C ca be expressed in positive MSO?
(Compare Rossman’08!)
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