Generic Structures for Monotone Monadic Second-Order Logic

Manuel Bodirsky

Institut für Algebra, TU Dresden Joint work with Simon Knäuer and Sebastian Rudolph

27.10.2023 Workshop Generic Structures, Bedlewo

ERC Synergy Grant POCOCOP (GA 101071674).

Generic Structures for MSO

This talk:

Applications of generic structures in theoretical computer science

This talk:

- Applications of generic structures in theoretical computer science
- More specifically: fine-grained study of monadic second-order logic via ω-categorical structures

This talk:

- Applications of generic structures in theoretical computer science
- More specifically: fine-grained study of monadic second-order logic via ω-categorical structures
- New source of generic structures

Monadic Second-Order Logic (MSO): extension of first-order logic by (existential and universal) quantification over subsets.

 $\forall M_1 \exists M_2 \forall \cdots \forall x \exists y \forall \cdots \varphi$

Monadic Second-Order Logic (MSO): extension of first-order logic by (existential and universal) quantification over subsets.

 $\forall M_1 \exists M_2 \forall \cdots \forall x \exists y \forall \cdots \varphi$

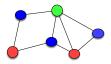
Example 1. 3-colorability of a graph (V; E) can be expressed by

Monadic Second-Order Logic (MSO): extension of first-order logic by (existential and universal) quantification over subsets.

 $\forall M_1 \exists M_2 \forall \cdots \forall x \exists y \forall \cdots \phi$

Example 1. 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \forall x, y : (R(x) \lor G(x) \lor B(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y) \\ \lor G(x) \land G(y) \\ \lor B(x) \land B(y)))$$

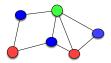


Monadic Second-Order Logic (MSO): extension of first-order logic by (existential and universal) quantification over subsets.

 $\forall M_1 \exists M_2 \forall \cdots \forall x \exists y \forall \cdots \phi$

Example 1. 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \forall x, y : (R(x) \lor G(x) \lor B(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y) \\ \lor G(x) \land G(y) \\ \lor B(x) \land B(y)))$$



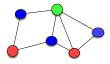
Example 2. Digraph acyclicity

Monadic Second-Order Logic (MSO): extension of first-order logic by (existential and universal) quantification over subsets.

 $\forall M_1 \exists M_2 \forall \cdots \forall x \exists y \forall \cdots \varphi$

Example 1. 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \forall x, y : (R(x) \lor G(x) \lor B(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y) \\ \lor G(x) \land G(y) \\ \lor B(x) \land B(y)))$$



Example 2. Digraph acyclicity can be expressed by

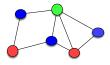
$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Monadic Second-Order Logic (MSO): extension of first-order logic by (existential and universal) quantification over subsets.

 $\forall M_1 \exists M_2 \forall \cdots \forall x \exists y \forall \cdots \phi$

Example 1. 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \ \forall x, y : (R(x) \lor G(x) \lor B(x)) \land (E(x, y) \Rightarrow \neg (R(x) \land R(y) \lor G(x) \land G(y) \lor B(x) \land G(y) \lor B(x) \land B(y)))$$



Example 2. Digraph acyclicity can be expressed by

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Observation. Both examples are monotone.

 Φ : monotone MSO τ -sentence.

 Φ : monotone MSO $\tau\text{-sentence.}$

Want to understand the computational complexity of the following problem:

 Φ : monotone MSO τ -sentence.

Want to understand the computational complexity of the following problem:

Given: finite τ -structure \mathfrak{A} .

 Φ : monotone MSO $\tau\text{-sentence.}$

Want to understand the computational complexity of the following problem:

- Given: finite τ -structure \mathfrak{A} .
- Question: $\mathfrak{A} \models \tau$?

 Φ : monotone MSO $\tau\text{-sentence.}$

Want to understand the computational complexity of the following problem:

- Given: finite τ -structure \mathfrak{A} .
- Question: $\mathfrak{A} \models \tau$?

Examples.

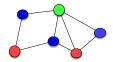
 $\Phi :$ monotone MSO $\tau \text{-sentence}.$

Want to understand the computational complexity of the following problem:

- Given: finite τ -structure \mathfrak{A} .
- Question: $\mathfrak{A} \models \tau$?

Examples.

3-colorability: NP-complete.



 $\Phi :$ monotone MSO $\tau \text{-sentence}.$

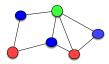
Want to understand the computational complexity of the following problem:

- Given: finite τ -structure \mathfrak{A} .
- Question: $\mathfrak{A} \models \tau$?

Examples.

3-colorability: NP-complete.

Digraph acyclicity: in P.



 τ : a finite relational signature.

 $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure. ('template')

 τ : a finite relational signature.

 $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure. ('template')

 $CSP(\mathfrak{B})$: class of all finite τ -structures with a homomorphism to \mathfrak{B} .

 τ : a finite relational signature.

 $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure. ('template')

 $CSP(\mathfrak{B})$: class of all finite τ -structures with a homomorphism to \mathfrak{B} .

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

 τ : a finite relational signature.

 $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure. ('template')

 $CSP(\mathfrak{B})$: class of all finite τ -structures with a homomorphism to \mathfrak{B} .

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

 τ : a finite relational signature.

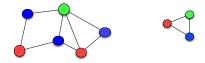
 $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure. ('template')

 $CSP(\mathfrak{B})$: class of all finite τ -structures with a homomorphism to \mathfrak{B} .

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?



 τ : a finite relational signature.

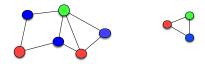
 $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure. ('template')

 $CSP(\mathfrak{B})$: class of all finite τ -structures with a homomorphism to \mathfrak{B} .

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?



Further examples:

■ CSP(Q; <): digraph acyclicity.

 τ : a finite relational signature.

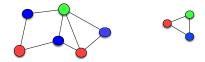
 $\mathfrak{B} = (B; R_1, \dots, R_l)$: a τ -structure. ('template')

 $CSP(\mathfrak{B})$: class of all finite τ -structures with a homomorphism to \mathfrak{B} .

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?



Further examples:

- CSP(Q;<): digraph acyclicity.
- CSP(Q; Betw) where Betw = {(x, y, z) | x < y < z ∨ z < y < x}: the Betweenness Problem, NP-complete.</p>

Observation. If \mathfrak{B} is a finite structure, then $CSP(\mathfrak{B})$ is in MSO.

Observation. If \mathfrak{B} is a finite structure, then $CSP(\mathfrak{B})$ is in MSO.

Questions:

■ Is CSP(Q; Betw) in MSO?

Observation. If \mathfrak{B} is a finite structure, then $CSP(\mathfrak{B})$ is in MSO.

Questions:

- Is CSP(Q; Betw) in MSO?
- Is $CSP(\mathbb{Z}; succ)$ where $succ := \{(x, y) \mid y = x + 1\}$ in MSO?

Observation. If \mathfrak{B} is a finite structure, then $CSP(\mathfrak{B})$ is in MSO.

Questions:

- Is CSP(Q; Betw) in MSO?
- Is $CSP(\mathbb{Z}; succ)$ where $succ := \{(x, y) | y = x + 1\}$ in MSO?

Facts:

Büchi's theorem: Subsets of {0, 1}^{<ω} can be defined in MSO if and only if they are regular.

Observation. If \mathfrak{B} is a finite structure, then $CSP(\mathfrak{B})$ is in MSO.

Questions:

- Is CSP(Q; Betw) in MSO?
- Is $CSP(\mathbb{Z}; succ)$ where $succ := \{(x, y) | y = x + 1\}$ in MSO?

Facts:

- Büchi's theorem: Subsets of {0, 1}^{<ω} can be defined in MSO if and only if they are regular.
- Courcelles's theorem: MSO sentences can be evaluated in polynomial time on classes of structures of bounded treewidth.

Q1: Which CSPs can be expressed in MSO?

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ -structures equals $CSP(\mathfrak{B})$ for some (countable) structure \mathfrak{B} if and only if

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ -structures equals $CSP(\mathfrak{B})$ for some (countable) structure \mathfrak{B} if and only if

 $\blacksquare \ \mathcal{C}$ is closed under disjoint unions, and

- Q1: Which CSPs can be expressed in MSO?
- Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ -structures equals $CSP(\mathfrak{B})$ for some (countable) structure \mathfrak{B} if and only if

- $\blacksquare \ \mathcal{C}$ is closed under disjoint unions, and
- $\blacksquare \ \mathcal{C}$ is monotone: the complement of \mathcal{C} is closed under homomorphisms.

CSPs in MSO

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ -structures equals $CSP(\mathfrak{B})$ for some (countable) structure \mathfrak{B} if and only if

- $\blacksquare \ \mathcal{C}$ is closed under disjoint unions, and
- $\blacksquare \ \mathcal{C}$ is monotone: the complement of \mathcal{C} is closed under homomorphisms.

Theorem (B.+Knäuer+Rudolph'21).

For every monotone MSO sentence Φ there exists a finite set of ω -categorical structures $\mathfrak{B}_1, \ldots, \mathfrak{B}_n$ such that

$$\{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\} = \mathsf{CSP}(\mathfrak{B}_1) \cup \cdots \cup \mathsf{CSP}(\mathfrak{B}_n)$$

CSPs in MSO

Q1: Which CSPs can be expressed in MSO?

Q2: Which MSO sentences express CSPs?

Easy fact. A class C of finite τ -structures equals $CSP(\mathfrak{B})$ for some (countable) structure \mathfrak{B} if and only if

- $\blacksquare \ \mathcal{C}$ is closed under disjoint unions, and
- $\blacksquare \ \mathcal{C}$ is monotone: the complement of \mathcal{C} is closed under homomorphisms.

Theorem (B.+Knäuer+Rudolph'21).

For every monotone MSO sentence Φ there exists a finite set of ω -categorical structures $\mathfrak{B}_1, \ldots, \mathfrak{B}_n$ such that

$$\{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\} = \mathsf{CSP}(\mathfrak{B}_1) \cup \cdots \cup \mathsf{CSP}(\mathfrak{B}_n)$$

In particular:

every CSP in MSO equals $\text{CSP}(\mathfrak{B})$ for an $\omega\text{-categorical structure }\mathfrak{B}.$

A structure \mathfrak{A} is ω -categorical if all countable models of $\mathsf{Th}(\mathfrak{A})$ are isomorphic.

A structure \mathfrak{A} is ω -categorical if all countable models of $\mathsf{Th}(\mathfrak{A})$ are isomorphic.

Thm (Ryll-Nardzewski): A countable structure \mathfrak{A} is ω -categorical if and only if Aut(\mathfrak{A}) is oligomorphic.

A structure \mathfrak{A} is ω -categorical if all countable models of $\mathsf{Th}(\mathfrak{A})$ are isomorphic.

Thm (Ryll-Nardzewski): A countable structure \mathfrak{A} is ω -categorical if and only if Aut(\mathfrak{A}) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

A structure \mathfrak{A} is ω -categorical if all countable models of Th(\mathfrak{A}) are isomorphic.

Thm (Ryll-Nardzewski): A countable structure \mathfrak{A} is ω -categorical if and only if Aut(\mathfrak{A}) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

Remark 1. Every ω -categorical structure \mathfrak{B} has an ω -categorical model companion, which is unique up to isomorphism, and generic for Age(\mathfrak{B}).

A structure \mathfrak{A} is ω -categorical if all countable models of $\mathsf{Th}(\mathfrak{A})$ are isomorphic.

Thm (Ryll-Nardzewski): A countable structure \mathfrak{A} is ω -categorical if and only if Aut(\mathfrak{A}) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

Remark 1. Every ω -categorical structure \mathfrak{B} has an ω -categorical model companion, which is unique up to isomorphism, and generic for Age(\mathfrak{B}).

Remark 2. If \mathfrak{A} is ω -categorical, then the complexity of $CSP(\mathfrak{A})$ only depends on

A structure \mathfrak{A} is ω -categorical if all countable models of $\mathsf{Th}(\mathfrak{A})$ are isomorphic.

Thm (Ryll-Nardzewski): A countable structure \mathfrak{A} is ω -categorical if and only if Aut(\mathfrak{A}) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

Remark 1. Every ω -categorical structure \mathfrak{B} has an ω -categorical model companion, which is unique up to isomorphism, and generic for Age(\mathfrak{B}).

Remark 2. If \mathfrak{A} is ω -categorical, then the complexity of $CSP(\mathfrak{A})$ only depends on

• the set $Pol(\mathfrak{A})$ of polymorphisms of \mathfrak{A} (B.+Nešetřil'03);

A structure \mathfrak{A} is ω -categorical if all countable models of $\mathsf{Th}(\mathfrak{A})$ are isomorphic.

Thm (Ryll-Nardzewski): A countable structure \mathfrak{A} is ω -categorical if and only if Aut(\mathfrak{A}) is oligomorphic.

Examples. Homogeneous structures with finite relational signature.

Remark 1. Every ω -categorical structure \mathfrak{B} has an ω -categorical model companion, which is unique up to isomorphism, and generic for Age(\mathfrak{B}).

Remark 2. If \mathfrak{A} is ω -categorical, then the complexity of $CSP(\mathfrak{A})$ only depends on

- the set $Pol(\mathfrak{A})$ of polymorphisms of \mathfrak{A} (B.+Nešetřil'03);
- $Pol(\mathfrak{A})$ as a topological clone (B.+Pinsker'15).

 ϕ : first-order sentence. C: class of finite models of ϕ .

 ϕ : first-order sentence.

 \mathcal{C} : class of finite models of φ .

Theorem (Rossmann'08). If C is closed under homomorphisms, then ϕ is equivalent to an existential positive sentence.

 ϕ : first-order sentence.

C: class of finite models of ϕ .

Theorem (Rossmann'08). If C is closed under homomorphisms, then ϕ is equivalent to an existential positive sentence. That is, to a finite disjunction of primitive positive sentences, i.e., sentences of the form

$$\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$$

for ψ_1, \ldots, ψ_m atomic.

 ϕ : first-order sentence.

C: class of finite models of ϕ .

Theorem (Rossmann'08). If C is closed under homomorphisms, then ϕ is equivalent to an existential positive sentence. That is, to a finite disjunction of primitive positive sentences, i.e., sentences of the form

$$\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$$

for ψ_1, \ldots, ψ_m atomic.

Reformulation. If C is monotone, then there exists a finite set of finite structures \mathcal{F} such that $C = Forb(\mathcal{F})$ where

 $Forb(\mathcal{F}) := \{\mathfrak{A} \text{ finite } | \text{ no structure in } \mathcal{F} \text{ has homomorphism to } \mathfrak{A}\}.$

Theorem (Cherlin+Shelah+Shi'99). Let \mathcal{F} be a finite set of finite connected structures. Then there exists an ω -categorical model-complete structure \mathfrak{B} such that $\mathfrak{A} \hookrightarrow \mathfrak{B}$ if and only if no structure in \mathcal{F} has a homomorphism to \mathfrak{A} .

Theorem (Cherlin+Shelah+Shi'99). Let \mathcal{F} be a finite set of finite connected structures. Then there exists an ω -categorical model-complete structure \mathfrak{B} such that $\mathfrak{A} \hookrightarrow \mathfrak{B}$ if and only if no structure in \mathcal{F} has a homomorphism to \mathfrak{A} .

Note. \mathfrak{B} is up to isomorphism unique.

Theorem (Cherlin+Shelah+Shi'99). Let \mathcal{F} be a finite set of finite connected structures. Then there exists an ω -categorical model-complete structure \mathfrak{B} such that $\mathfrak{A} \hookrightarrow \mathfrak{B}$ if and only if no structure in \mathcal{F} has a homomorphism to \mathfrak{A} .

Note. \mathfrak{B} is up to isomorphism unique.

Final step: If \mathcal{F} contains structures that are not connected, find finitely many finite sets of finite connected structures $\mathcal{F}_1, \ldots, \mathcal{F}_n$ such that

 $Forb(\mathcal{F}) = Forb(\mathcal{F}_1) \cup \cdots \cup Forb(\mathcal{F}_n).$

Theorem (Cherlin+Shelah+Shi'99). Let \mathcal{F} be a finite set of finite connected structures. Then there exists an ω -categorical model-complete structure \mathfrak{B} such that $\mathfrak{A} \hookrightarrow \mathfrak{B}$ if and only if no structure in \mathcal{F} has a homomorphism to \mathfrak{A} .

Note. \mathfrak{B} is up to isomorphism unique.

Final step: If \mathcal{F} contains structures that are not connected, find finitely many finite sets of finite connected structures $\mathcal{F}_1, \ldots, \mathcal{F}_n$ such that

$$Forb(\mathcal{F}) = Forb(\mathcal{F}_1) \cup \cdots \cup Forb(\mathcal{F}_n).$$

Combining all this:

Corollary. There exists a finite set of ω -categorical structures $\mathfrak{B}_1, \ldots, \mathfrak{B}_n$ such that

$$\mathcal{C} = \mathsf{CSP}(\mathfrak{B}_1) \cup \cdots \cup \mathsf{CSP}(\mathfrak{B}_n).$$

 $\begin{array}{l} \Phi \text{: MSO sentence.} \\ \mathcal{C} \text{: class of all finite models of } \Phi. \end{array}$

 Φ : MSO sentence.

 \mathcal{C} : class of all finite models of Φ .

Assume $\ensuremath{\mathcal{C}}$ is monotone and closed under disjoint unions.

 Φ : MSO sentence.

C: class of all finite models of Φ .

Assume C is monotone and closed under disjoint unions.

Use:

A necessary and sufficient condition for the existence of an ω-categorical limit structure of B.+Hils+Martin'14. Φ : MSO sentence.

C: class of all finite models of Φ .

Assume C is monotone and closed under disjoint unions.

Use:

- A necessary and sufficient condition for the existence of an ω-categorical limit structure of B.+Hils+Martin'14.
- Quantifier-rank for MSO.

Primitive Positive Formulas

 $\phi_1(x_1, \ldots, x_n)$ and $\phi_2(x_1, \ldots, x_n)$: primitive positive τ -formulas.

$\phi_1(x_1, \ldots, x_n)$ and $\phi_2(x_1, \ldots, x_n)$: primitive positive τ -formulas. Define $\phi_1 \sim_n^C \phi_2$

 $\phi_1(x_1, \ldots, x_n)$ and $\phi_2(x_1, \ldots, x_n)$: primitive positive τ -formulas. Define $\phi_1 \sim_n^{\mathcal{C}} \phi_2$ if for all pp τ -formulas $\psi(x_1, \ldots, x_n)$, we have

 $\phi_1(x_1,\ldots,x_n) \wedge \psi(x_1,\ldots,x_n)$ satisfiable in $\mathcal C$

if and only if

 $\phi_2(x_1,\ldots,x_n) \wedge \psi(x_1,\ldots,x_n)$ satisfiable in C.

 $\phi_1(x_1, \ldots, x_n)$ and $\phi_2(x_1, \ldots, x_n)$: primitive positive τ -formulas. Define $\phi_1 \sim_n^{\mathcal{C}} \phi_2$ if for all pp τ -formulas $\psi(x_1, \ldots, x_n)$, we have

 $\varphi_1(x_1,\ldots,x_n) \wedge \psi(x_1,\ldots,x_n)$ satisfiable in $\mathcal C$

if and only if

$$\phi_2(x_1,\ldots,x_n) \wedge \psi(x_1,\ldots,x_n)$$
 satisfiable in C .

An equivalence relation.

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an $\omega\text{-categorical structure }\mathfrak{B}$ such that $\text{CSP}(\mathfrak{B})=\mathcal{C}$ if and only if

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an ω -categorical structure \mathfrak{B} such that $CSP(\mathfrak{B}) = \mathcal{C}$ if and only if $\sim_n^{\mathcal{C}}$ has finite index for every $n \in \mathbb{N}$.

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an ω -categorical structure \mathfrak{B} such that $CSP(\mathfrak{B}) = \mathcal{C}$ if and only if $\sim_n^{\mathcal{C}}$ has finite index for every $n \in \mathbb{N}$.

Question. Which of the following CSPs can be formulated with an ω -categorical template?

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an ω -categorical structure \mathfrak{B} such that $CSP(\mathfrak{B}) = \mathcal{C}$ if and only if $\sim_n^{\mathcal{C}}$ has finite index for every $n \in \mathbb{N}$.

Question. Which of the following CSPs can be formulated with an ω -categorical template?

■ CSP(ℤ;<)?

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an ω -categorical structure \mathfrak{B} such that $CSP(\mathfrak{B}) = \mathcal{C}$ if and only if $\sim_n^{\mathcal{C}}$ has finite index for every $n \in \mathbb{N}$.

Question. Which of the following CSPs can be formulated with an ω -categorical template?

■ CSP(ℤ;<)? Yes, equals CSP(ℚ;<).</p>

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an ω -categorical structure \mathfrak{B} such that $CSP(\mathfrak{B}) = \mathcal{C}$ if and only if $\sim_n^{\mathcal{C}}$ has finite index for every $n \in \mathbb{N}$.

Question. Which of the following CSPs can be formulated with an ω -categorical template?

- CSP(ℤ;<)?
 - **Yes**, equals $CSP(\mathbb{Q}; <)$.
- CSP(\mathbb{Z} ; succ) where succ := {(x, y) | y = x + 1}?

Theorem (B.+Hils+Martin'14). Let C be a class of finite structures which is

- closed under disjoint unions and
- whose complement is closed under homomorphisms.

Then there exists an ω -categorical structure \mathfrak{B} such that $CSP(\mathfrak{B}) = \mathcal{C}$ if and only if $\sim_n^{\mathcal{C}}$ has finite index for every $n \in \mathbb{N}$.

Question. Which of the following CSPs can be formulated with an ω -categorical template?

- CSP(ℤ;<)?
 - **Yes**, equals $CSP(\mathbb{Q}; <)$.

■ CSP(
$$\mathbb{Z}$$
; succ) where succ := {(x, y) | $y = x + 1$ }?
No, $\sim_2^{CSP(\mathbb{Z}; succ)}$ has infinite index.

MSO Quantifier Rank

Generic Structures for MSO

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ .

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}: \tau$ -structures.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Lemma \sim_{a}^{MSO} is an equivalence relation with finite index.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Lemma \sim_a^{MSO} is an equivalence relation with finite index.

 $\phi(x_1, \ldots, x_n)$: a primitive positive τ -formula. \mathfrak{S}_{Φ} : the $\tau \cup \{c_1, \ldots, c_n\}$ -structure whose elements are the vertices of ϕ , whose relations are the ones prescribed by ϕ , and setting $c_i^{\mathfrak{S}_{\Phi}} := x_i$.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Lemma \sim_a^{MSO} is an equivalence relation with finite index.

 $\phi(x_1, \ldots, x_n)$: a primitive positive τ -formula. \mathfrak{S}_{ϕ} : the $\tau \cup \{c_1, \ldots, c_n\}$ -structure whose elements are the vertices of ϕ , whose relations are the ones prescribed by ϕ , and setting $c_i^{\mathfrak{S}_{\phi}} := x_i$.

Theorem. If $\mathfrak{S}_{\phi} \simeq_{q}^{\mathsf{GSO}} \mathfrak{S}_{\psi}$ then $\phi \sim_{n}^{\mathcal{C}} \psi$.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Lemma \sim_a^{MSO} is an equivalence relation with finite index.

 $\phi(x_1, \ldots, x_n)$: a primitive positive τ -formula. \mathfrak{S}_{ϕ} : the $\tau \cup \{c_1, \ldots, c_n\}$ -structure whose elements are the vertices of ϕ , whose relations are the ones prescribed by ϕ , and setting $c_i^{\mathfrak{S}_{\phi}} := x_i$.

Theorem. If $\mathfrak{S}_{\phi} \simeq_{q}^{\mathsf{GSO}} \mathfrak{S}_{\psi}$ then $\phi \sim_{n}^{\mathcal{C}} \psi$.

Proof. Back and Forth argument.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Lemma \sim_a^{MSO} is an equivalence relation with finite index.

 $\phi(x_1, \ldots, x_n)$: a primitive positive τ -formula. \mathfrak{S}_{ϕ} : the $\tau \cup \{c_1, \ldots, c_n\}$ -structure whose elements are the vertices of ϕ , whose relations are the ones prescribed by ϕ , and setting $c_i^{\mathfrak{S}_{\phi}} := x_i$.

Theorem. If $\mathfrak{S}_{\phi} \simeq_q^{\mathsf{GSO}} \mathfrak{S}_{\psi}$ then $\phi \sim_n^{\mathcal{C}} \psi$.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals $CSP(\mathfrak{B})$ for an ω -categorical structure.

Quantifier-rank of Φ : maximal number of nested (FO or SO) quantifiers in Φ . $\mathfrak{A}, \mathfrak{B}$: τ -structures.

 $\mathfrak{A} \simeq_q^{\mathsf{MSO}} \mathfrak{B}$: \mathfrak{A} and \mathfrak{B} satisfy the same quantifier rank q MSO sentences.

Lemma \sim_a^{MSO} is an equivalence relation with finite index.

 $\phi(x_1, \ldots, x_n)$: a primitive positive τ -formula. \mathfrak{S}_{Φ} : the $\tau \cup \{c_1, \ldots, c_n\}$ -structure whose elements are the vertices of ϕ , whose relations are the ones prescribed by ϕ , and setting $c_i^{\mathfrak{S}_{\Phi}} := x_i$.

Theorem. If $\mathfrak{S}_{\Phi} \simeq_{q}^{\mathsf{GSO}} \mathfrak{S}_{\psi}$ then $\phi \sim_{n}^{\mathcal{C}} \psi$.

Proof. Back and Forth argument.

Hence, every CSP in MSO equals $CSP(\mathfrak{B})$ for an ω -categorical structure.

Corollary. $CSP(\mathbb{Z}; succ)$ is not expressible in MSO.

■ For every CSP C in MSO there exists a model complete ω-categorical structure 𝔅 such that Age(𝔅) = C, and 𝔅 is unique up to isomorphism.

- For every CSP C in MSO there exists a model complete ω-categorical structure 𝔅 such that Age(𝔅) = C, and 𝔅 is unique up to isomorphism.
- If C can be described by a monotone MSO sentence which is not a CSP, extra work is needed to write C as

 $CSP(\mathfrak{B}_1) \cup \cdots \cup CSP(\mathfrak{B}_n).$

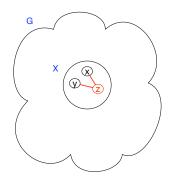
Consider the following MSO sentence Φ :

 $\forall X((\exists x.X(x)) \Rightarrow \exists x, y \in X \forall z \in X(\neg E(x, z) \lor \neg E(y, z))$

Consider the following MSO sentence Φ :

$$\forall X((\exists x.X(x)) \Rightarrow \exists x, y \in X \forall z \in X(\neg E(x, z) \lor \neg E(y, z))$$

A finite digraph does not satisfy Φ if there is a non-empty subset X of vertices such that for any $x, y \in X$ there exists $z \in X$ such that $(x, z), (y, z) \in E$.

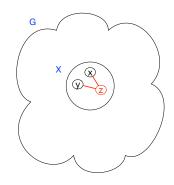


Consider the following MSO sentence Φ :

$$\forall X((\exists x.X(x)) \Rightarrow \exists x, y \in X \forall z \in X(\neg E(x, z) \lor \neg E(y, z))$$

A finite digraph does not satisfy Φ if there is a non-empty subset *X* of vertices such that for any $x, y \in X$ there exists $z \in X$ such that $(x, z), (y, z) \in E$.

Expl. $W_i \not\models \Phi$ for every $i \ge 2$.



W

Grädel+Hirsch+Otto'02: two ways to define Guarded Second-Order Logic (GSO).

Grädel+Hirsch+Otto'02: two ways to define Guarded Second-Order Logic (GSO).

Definition. Guarded first-order τ -formulas are defined inductively:

Grädel+Hirsch+Otto'02:

two ways to define Guarded Second-Order Logic (GSO).

Definition. Guarded first-order τ -formulas are defined inductively:

atomic τ-formulas are guarded;

Grädel+Hirsch+Otto'02:

two ways to define Guarded Second-Order Logic (GSO).

Definition. Guarded first-order τ -formulas are defined inductively:

- **1** atomic τ -formulas are guarded;
- **2** if ϕ and ψ are guarded τ -formulas, then so are $\phi \land \psi$, $\phi \lor \psi$, and $\neg \phi$.

Grädel+Hirsch+Otto'02:

two ways to define Guarded Second-Order Logic (GSO).

Definition. Guarded first-order τ -formulas are defined inductively:

- **1** atomic τ -formulas are guarded;
- **2** if ϕ and ψ are guarded τ -formulas, then so are $\phi \land \psi$, $\phi \lor \psi$, and $\neg \phi$.
- **3** if $\psi(\bar{x}, \bar{y})$ is a guarded τ -formula and $\alpha(\bar{x}, \bar{y})$ is an atomic τ -formula where every variable from \bar{x}, \bar{y} appears ('guard'), then

$$\exists \bar{y} (\alpha(\bar{x}, \bar{y}) \land \psi(\bar{x}, \bar{y}))$$

and

$$\forall \bar{y} (\alpha(\bar{x}, \bar{y}) \Rightarrow \psi(\bar{x}, \bar{y}))$$

are guarded τ -formulas.

Grädel+Hirsch+Otto'02:

two ways to define Guarded Second-Order Logic (GSO).

Definition. Guarded first-order τ -formulas are defined inductively:

- **1** atomic τ -formulas are guarded;
- **2** if ϕ and ψ are guarded τ -formulas, then so are $\phi \land \psi$, $\phi \lor \psi$, and $\neg \phi$.
- **3** if $\psi(\bar{x}, \bar{y})$ is a guarded τ -formula and $\alpha(\bar{x}, \bar{y})$ is an atomic τ -formula where every variable from \bar{x}, \bar{y} appears ('guard'), then

$$\exists \bar{y} (\alpha(\bar{x}, \bar{y}) \land \psi(\bar{x}, \bar{y}))$$

and

$$\forall \bar{y} (\alpha(\bar{x}, \bar{y}) \Rightarrow \psi(\bar{x}, \bar{y}))$$

are guarded τ -formulas.

GSO: additionally allow (unrestricted) second-order quantification.

Examples.

Digraph acyclicity:

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Examples.

Digraph acyclicity:

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Note: formulas with one free variable are always guarded, because $\exists x.\psi(x)$ is equivalent to $\exists x(x = x \Rightarrow \psi(x))$.

Examples.

Digraph acyclicity:

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Note: formulas with one free variable are always guarded, because $\exists x.\psi(x)$ is equivalent to $\exists x(x = x \Rightarrow \psi(x))$.

All of MSO!

Examples.

Digraph acyclicity:

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Note: formulas with one free variable are always guarded, because $\exists x.\psi(x)$ is equivalent to $\exists x(x = x \Rightarrow \psi(x))$.

- All of MSO!
- GSO sentence for CSP(Q; Betw):

Examples.

Digraph acyclicity:

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Note: formulas with one free variable are always guarded, because $\exists x.\psi(x)$ is equivalent to $\exists x(x = x \Rightarrow \psi(x))$.

- All of MSO!
- GSO sentence for CSP(Q; Betw):

 $\exists L \,\forall x, y, z (\mathsf{Betw}(x, y, z) \Rightarrow ((L(x, y) \land L(y, z)) \lor (L(z, y) \land L(y, x))) \land \underbrace{\mathsf{L} \text{ is acyclic}}_{\text{in MSO}}).$

 τ : finite relational signature.

Definition. Let \mathfrak{B} be a relational τ -structure.

• $(t_1, \ldots, t_n) \in B^n$ guarded in \mathfrak{B} if there exists atomic τ -formula and $b_1, \ldots, b_k \in B$ such that $\mathfrak{B} \models \phi(b_1, \ldots, b_k)$ and $t_1, \ldots, t_n \in \{b_1, \ldots, b_k\}$.

 τ : finite relational signature.

Definition. Let \mathfrak{B} be a relational τ -structure.

- $(t_1, \ldots, t_n) \in B^n$ guarded in \mathfrak{B} if there exists atomic τ -formula and $b_1, \ldots, b_k \in B$ such that $\mathfrak{B} \models \phi(b_1, \ldots, b_k)$ and $t_1, \ldots, t_n \in \{b_1, \ldots, b_k\}$.
- $R \subseteq B^n$ guarded if all tuples in R are guarded.

 τ : finite relational signature.

Definition. Let \mathfrak{B} be a relational τ -structure.

- $(t_1, \ldots, t_n) \in B^n$ guarded in \mathfrak{B} if there exists atomic τ -formula and $b_1, \ldots, b_k \in B$ such that $\mathfrak{B} \models \phi(b_1, \ldots, b_k)$ and $t_1, \ldots, t_n \in \{b_1, \ldots, b_k\}$.
- $R \subseteq B^n$ guarded if all tuples in R are guarded.
- Guarded semantics': If Φ is a second-order sentence, then B ⊨_g Φ if all second-order quantifiers in Φ are evaluated over guarded relations only.

 τ : finite relational signature.

Definition. Let \mathfrak{B} be a relational τ -structure.

- $(t_1, \ldots, t_n) \in B^n$ guarded in \mathfrak{B} if there exists atomic τ -formula and $b_1, \ldots, b_k \in B$ such that $\mathfrak{B} \models \phi(b_1, \ldots, b_k)$ and $t_1, \ldots, t_n \in \{b_1, \ldots, b_k\}$.
- $R \subseteq B^n$ guarded if all tuples in R are guarded.
- Guarded semantics': If Φ is a second-order sentence, then B ⊨_g Φ if all second-order quantifiers in Φ are evaluated over guarded relations only.
- **Theorem** (Grädel+Hirsch+Otto'02). GSO is equally expressive as second-order logic with guarded semantics.

 τ : finite relational signature.

Definition. Let \mathfrak{B} be a relational τ -structure.

- $(t_1, \ldots, t_n) \in B^n$ guarded in \mathfrak{B} if there exists atomic τ -formula and $b_1, \ldots, b_k \in B$ such that $\mathfrak{B} \models \phi(b_1, \ldots, b_k)$ and $t_1, \ldots, t_n \in \{b_1, \ldots, b_k\}$.
- $R \subseteq B^n$ guarded if all tuples in R are guarded.
- Guarded semantics': If Φ is a second-order sentence, then B ⊨_g Φ if all second-order quantifiers in Φ are evaluated over guarded relations only.

Theorem (Grädel+Hirsch+Otto'02). GSO is equally expressive as second-order logic with guarded semantics.

Theorem (B.+Knäuer+Rudolph'21).

For every monotone GSO sentence Φ there exists a finite set of ω -categorical structures $\mathfrak{B}_1, \ldots, \mathfrak{B}_n$ such that

 $\{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\} = \mathsf{CSP}(\mathfrak{B}_1) \cup \cdots \cup \mathsf{CSP}(\mathfrak{B}_n)$

Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.
- Complexity of such problems determined by $Pol(\mathfrak{B})$.

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.
- Complexity of such problems determined by $Pol(\mathfrak{B})$.

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.
- Complexity of such problems determined by $Pol(\mathfrak{B})$.

Questions:

1 Are all CSPs in MSO in P, NP-hard, or coNP-hard?

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.
- Complexity of such problems determined by Pol(𝔅).

- 1 Are all CSPs in MSO in P, NP-hard, or coNP-hard?
- **2** C: class of finite structures that can be expressed in MSO.

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.
- Complexity of such problems determined by Pol(𝔅).

- Are all CSPs in MSO in P, NP-hard, or coNP-hard?
- C: class of finite structures that can be expressed in MSO.
 C is closed under homomorphisms
 if and only if C ca be expressed in positive MSO?

- Every CSP in MSO can be formulated as the CSP for an ω-categorical structure 𝔅.
- Same for GSO instead of MSO.
- A powerful generalisation of the theorem of Cherlin, Shelah, and Shi.
- Complexity of such problems determined by Pol(𝔅).

- Are all CSPs in MSO in P, NP-hard, or coNP-hard?
- C: class of finite structures that can be expressed in MSO.
 C is closed under homomorphisms
 if and only if C ca be expressed in positive MSO?
 (Compare Rossman'08!)