Efficiently extending partial automorphisms of graphs

David Bradley-Williams

Institute of Mathematics, Czech Academy of Sciences

Conference on Generic Structures, Bedlewo, October 2023

Joint work in progress with Peter J. Cameron (St. Andrews)

EPPA

Definition

Let \mathscr{C} be a class of finite structures.

- Whenever $H \geq G$ in \mathscr{C} are such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- If every G in \mathscr{C} has an EPPA witness in \mathscr{C}, say \mathscr{C} has EPPA.

EPPA

Definition

Let \mathscr{C} be a class of finite structures.

- Whenever $H \geq G$ in \mathscr{C} are such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- If every G in \mathscr{C} has an EPPA witness in \mathscr{C}, say \mathscr{C} has EPPA.

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.

EPPA

Definition

Let \mathscr{C} be a class of finite structures.

- Whenever $H \geq G$ in \mathscr{C} are such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- If every G in \mathscr{C} has an EPPA witness in \mathscr{C}, say \mathscr{C} has EPPA.

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.
Hence sometimes called the Hrushovski Property.

Generic Motivation

Theorem (E. Hrushovski (1992))
The class of finite graphs has EPPA.

Generic Motivation

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.
A (final) combinatorial ingredient required in the orginal proof of:

```
Theorem (W. Hodges, I. Hodkinson, D. Lascar, and S. Shelah
(1993))
```

The automorphism group of the random graph has the small index property.

Generic Motivation

Theorem (E. Hrushovski (1992))

The class of finite graphs has EPPA.
A (final) combinatorial ingredient required in the orginal proof of:

Theorem (W. Hodges, I. Hodkinson, D. Lascar, and S. Shelah (1993))

The automorphism group of the random graph has the small index property.

One of the now standard methods to prove the existence of generic automorphisms of the Fraïssé limit of \mathscr{C} involves proving that \mathscr{C} has EPPA.

Definition

- Whenever $H \geq G$ are finite graphs such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.

Definition

- Whenever $H \geq G$ are finite graphs such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- The EPPA number of G, eppa (G) is the minimal number of vertices of an EPPA witness H for G.

Definition

- Whenever $H \geq G$ are finite graphs such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- The EPPA number of G, eppa (G) is the minimal number of vertices of an EPPA witness H for G.
- H called a minimal EPPA witness if $|H|=\operatorname{eppa}(G)$.

Definition

- Whenever $H \geq G$ are finite graphs such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- The EPPA number of G, eppa (G) is the minimal number of vertices of an EPPA witness H for G.
- H called a minimal EPPA witness if $|H|=\operatorname{eppa}(G)$.

If G is a finite homogeneous graph, then G it its own minimal EPPA witness and eppa $(G)=|G|$.

Definition

- Whenever $H \geq G$ are finite graphs such that every partial automorphism of G is the restriction of an automorphism of H, H is called an EPPA witness for G.
- The EPPA number of G, eppa (G) is the minimal number of vertices of an EPPA witness H for G.
- H called a minimal EPPA witness if $|H|=\operatorname{eppa}(G)$.

If G is a finite homogeneous graph, then G it its own minimal EPPA witness and eppa $(G)=|G|$.

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

- disjoint unions of cliques K_{n}, complements of these;
- The 5-cycle C_{5};
- $L\left(K_{3,3}\right)$, the line graph of complete bipartite graph $K_{3,3}$.

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

- disjoint unions of cliques K_{n}, complements of these;
- The 5-cycle C_{5};
- $L\left(K_{3,3}\right)$, the line graph of complete bipartite graph $K_{3,3}$.

Note: $C_{6}, P_{4}, K_{1} \cup K_{1,2}$, the Paw $\leq L\left(K_{3,3}\right)$.

Theorem (T. Gardiner (1976))

The finite homogeneous graphs are:

- disjoint unions of cliques K_{n}, complements of these;
- The 5-cycle C_{5};
- $L\left(K_{3,3}\right)$, the line graph of complete bipartite graph $K_{3,3}$.

Note: $C_{6}, P_{4}, K_{1} \cup K_{1,2}$, the Paw $\leq L\left(K_{3,3}\right)$.

Exercise: Is $L\left(K_{3,3}\right)$ a minimal EPPA witness for these graphs?

Tools via finite groups

Observation

Suppose that H is an EPPA witness for G. Then $\operatorname{Aut}(H)$ has a section (a quotient of a subgroup) isomorphic to $\operatorname{Aut}(G)$; in particular, $|\operatorname{Aut}(G)|$ divides $|\operatorname{Aut}(H)|$.

Proof.

From the definition of EPPA witness, we see that the setwise stabiliser of $V(G)$ in $\operatorname{Aut}(H)$ induces $\operatorname{Aut}(G)$ on it.

Tools via finite groups

Theorem

Let G be a graph, and H an EPPA witness for G with the smallest number of vertices and, subject to that, the smallest number of edges. Suppose that neither G nor G^{\prime} is a disjoint union of complete graphs.

Tools via finite groups

Theorem

Let G be a graph, and H an EPPA witness for G with the smallest number of vertices and, subject to that, the smallest number of edges. Suppose that neither G nor G^{\prime} is a disjoint union of complete graphs.
(1) H is vertex-transitive.

Tools via finite groups

Theorem

Let G be a graph, and H an EPPA witness for G with the smallest number of vertices and, subject to that, the smallest number of edges. Suppose that neither G nor G^{\prime} is a disjoint union of complete graphs.
(1) H is vertex-transitive.
(2) H is arc-transitive.

Tools via finite groups

Theorem

Let G be a graph, and H an EPPA witness for G with the smallest number of vertices and, subject to that, the smallest number of edges. Suppose that neither G nor G^{\prime} is a disjoint union of complete graphs.
(1) H is vertex-transitive.
(2) H is arc-transitive.
(3) Either H is vertex-primitive, or the vertex set of G contains at most one point of any block of imprimitivity for $\operatorname{Aut}(H)$. In the latter case, the number of vertices of the EPPA witness is at least twice the number of vertices of G.

Tools via finite groups

Theorem

Let G be a graph, and H an EPPA witness for G with the smallest number of vertices and, subject to that, the smallest number of edges. Suppose that neither G nor G^{\prime} is a disjoint union of complete graphs.
(1) H is vertex-transitive.
(2) H is arc-transitive.
(3) Either H is vertex-primitive, or the vertex set of G contains at most one point of any block of imprimitivity for $\operatorname{Aut}(H)$. In the latter case, the number of vertices of the EPPA witness is at least twice the number of vertices of G.

So minimality of an EPPA witness H can sometimes (say when $|G|<|H|<2|G|)$ can be verified by considering possibilities of primitive groups of degree $d,|G|<d<|H|$.

Scarcity of primitive permutation groups

Degree	Nr Permutation Groups	Nr Primitive Groups
	OEIS : A000019	OEIS : A000638
1	1	1
2	1	1
3	2	2
4	4	2
5	11	5
6	19	4
7	56	7
8	96	7
9	296	11
10	554	9
11	1593	8
12	3094	6
13	10723	9
14	20832	4

Sample argument

$L\left(K_{3,3}\right)$ is a minimal EPPA witness for C_{6}.

Sample argument

$L\left(K_{3,3}\right)$ is a minimal EPPA witness for C_{6}.

Proof.

$\left|L\left(K_{3,3}\right)\right|=9$ and $\left|C_{6}\right|=6$; by Theorem 8, a smaller EPPA witness would have to have vertex-primitive automorphism group of degree 7 or 8 having the dihedral group of order $12=\operatorname{Aut}\left(C_{6}\right)$ as a section.
After checking the few possibilities, see that there is no such primitive group.

Very small EPPA witnesses

Theorem

Let G be a graph on n vertices, which has a minimum EPPA-witness H on fewer than $(5 / 4) n$ vertices. Then H is homogeneous.

Proof.

We say that a graph is k-homogeneous if any isomorphism between induced subgraphs on at most k vertices extends to an automorphism. We use two ingredients in the proof:
(a) (Neumann's Separation Lemma). Let A and B be subsets of the domain of a transitive permutation group G of degree n. If $|A| \cdot|B|<n$, then there exists $g \in G$ such that $A g \cap B=\emptyset$.

Very small EPPA witnesses

Theorem

Let G be a graph on n vertices, which has a minimum EPPA-witness H on fewer than $(5 / 4) n$ vertices. Then H is homogeneous.

Proof.

We say that a graph is k-homogeneous if any isomorphism between induced subgraphs on at most k vertices extends to an automorphism. We use two ingredients in the proof:
(a) (Neumann's Separation Lemma). Let A and B be subsets of the domain of a transitive permutation group G of degree n. If $|A| \cdot|B|<n$, then there exists $g \in G$ such that $A g \cap B=\emptyset$.
(b) (Cameron). A 5-homogeneous graph is homogeneous.

Very small EPPA witnesses

Theorem

Let G be a graph on n vertices, which has a minimum EPPA-witness H on fewer than (5/4)n vertices. Then H is homogeneous.

Proof.

- Let G have n vertices and have a minimum EPPA-witness H with m vertices, where $m<(5 / 4) n$.

Very small EPPA witnesses

Theorem

Let G be a graph on n vertices, which has a minimum EPPA-witness H on fewer than (5/4)n vertices. Then H is homogeneous.

Proof.

- Let G have n vertices and have a minimum EPPA-witness H with m vertices, where $m<(5 / 4) n$.
- Then $\operatorname{Aut}(H)$ is transitive, and $|V(H) \backslash V(G)|<m / 5$.

Very small EPPA witnesses

Theorem

Let G be a graph on n vertices, which has a minimum EPPA-witness H on fewer than $(5 / 4) n$ vertices. Then H is homogeneous.

Proof.

- Let G have n vertices and have a minimum EPPA-witness H with m vertices, where $m<(5 / 4) n$.
- Then $\operatorname{Aut}(H)$ is transitive, and $|V(H) \backslash V(G)|<m / 5$.
- By (a), if A is a set of vertices of H with $|A| \leq 5$, then there exists $g \in \operatorname{Aut}(H)$ such that $A g \cap(V(H) \backslash V(G))=\emptyset$; in other words, $A g \subseteq V(G)$.

Very small EPPA witnesses

Theorem

Let G be a graph on n vertices, which has a minimum EPPA-witness H on fewer than $(5 / 4) n$ vertices. Then H is homogeneous.

Proof.

- Let G have n vertices and have a minimum EPPA-witness H with m vertices, where $m<(5 / 4) n$.
- Then $\operatorname{Aut}(H)$ is transitive, and $|V(H) \backslash V(G)|<m / 5$.
- By (a), if A is a set of vertices of H with $|A| \leq 5$, then there exists $g \in \operatorname{Aut}(H)$ such that $A g \cap(V(H) \backslash V(G))=\emptyset$; in other words, $A g \subseteq V(G)$.
- Let A and B be subsets of $V(H)$ with $|A| \leq 5$, and $f: A \rightarrow B$ a partial isomorphism. By what we have just proved, we may assume that $A, B \subseteq V(G)$. Since H is an EPPA-witness for G, the map f extends to an automorphism of H. Thus H is 5-homogeneous.

Small EPPA witnesses

Theorem

Let G be a graph on n vertices, and H a minimum EPPA-witness for G with fewer than $2 n$ vertices. Then $\operatorname{Aut}(H)$ is a rank 3 permutation group on $V(H)$.

Proof.

Repeating the above argument with 2 replacing 5 , we see that H is 2homgeneous, which means that $\operatorname{Aut}(H)$ is transitive on vertices, ordered edges, and ordered non-edges; the definition of rank 3.

Problem

Classify the graphs G on n vertices which have an EPPA witness on fewer than $2 n$ vertices. (A solution to this problem would generalize Gardiner's classification of finite homogeneous graphs.)

Problem

Classify the graphs G on n vertices which have an EPPA witness on fewer than $2 n$ vertices. (A solution to this problem would generalize Gardiner's classification of finite homogeneous graphs.)

Hints

- A rank 3 permutation group has a unique complementary pair of invariant graphs (apart from the complete and null graphs).

Problem

Classify the graphs G on n vertices which have an EPPA witness on fewer than $2 n$ vertices. (A solution to this problem would generalize Gardiner's classification of finite homogeneous graphs.)

Hints

- A rank 3 permutation group has a unique complementary pair of invariant graphs (apart from the complete and null graphs).
- If the group is imprimitive, these graphs are a disjoint union of complete graphs of the same size and its complement; these graphs are homogeneous.

Problem

Classify the graphs G on n vertices which have an EPPA witness on fewer than $2 n$ vertices. (A solution to this problem would generalize Gardiner's classification of finite homogeneous graphs.)

Hints

- A rank 3 permutation group has a unique complementary pair of invariant graphs (apart from the complete and null graphs).
- If the group is imprimitive, these graphs are a disjoint union of complete graphs of the same size and its complement; these graphs are homogeneous.
- Using the Classification of Finite Simple Groups, all rank 3 permutation groups (and hence all 2-homogeneous graphs) are known (M. W. Liebeck (1987)).

Two-graphs and double covers

Now suppose the graph G has n vertices and has an EPPA witness with $2 n$ vertices, whose automorphism group has n blocks of imprimitivity of size 2. We show that certain graphs G have EPPA-covers arising from two-graphs corresponding to the "switching class" of G.

Two-graphs and double covers

Now suppose the graph G has n vertices and has an EPPA witness with $2 n$ vertices, whose automorphism group has n blocks of imprimitivity of size 2. We show that certain graphs G have EPPA-covers arising from two-graphs corresponding to the "switching class" of G.

Definition

A two-graph is a pair (X, T), where X is a set and T a collection of 3subsets of X such that any 4 -subset of X contains an even number of members of T.

Two-graphs and double covers

Now suppose the graph G has n vertices and has an EPPA witness with $2 n$ vertices, whose automorphism group has n blocks of imprimitivity of size 2. We show that certain graphs G have EPPA-covers arising from two-graphs corresponding to the "switching class" of G.

Definition

A two-graph is a pair (X, T), where X is a set and T a collection of 3subsets of X such that any 4 -subset of X contains an even number of members of T.

Definition

Graphs G_{1} and G_{2} on the same vertex set X are switching-equivalent if there is a subset Y of X such that G_{1} and G_{2} have the same edges within our outside Y and complementary edges between Y and $X \backslash Y$.

Definition

A double cover of the complete graph on X is a graph on a set \hat{X} with a two-to-one surjection τ to X such that

- points with the same image under τ are not adjacent;
- if $\tau\left(x_{1}\right)=\tau\left(x_{2}\right) \neq \tau\left(y_{1}\right)=\tau\left(y_{2}\right)$, there are two disjoint edges between $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$.

Definition

A double cover of the complete graph on X is a graph on a set \hat{X} with a two-to-one surjection τ to X such that

- points with the same image under τ are not adjacent;
- if $\tau\left(x_{1}\right)=\tau\left(x_{2}\right) \neq \tau\left(y_{1}\right)=\tau\left(y_{2}\right)$, there are two disjoint edges between $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$.

Theorem

Let (X, T) be the two-graph corresponding to a switching class S. Let D be the corresponding double cover. Then the following are equivalent:
(a) (X, T) is homogeneous;
(b) D is homogeneous (as a structure with a partition into parts of size 2 in addition to the graph structure);
(c) D is an EPPA-witness for partial isomorphisms between graphs in S. In particular D is an EPPA-witness for any graph in S.

Theorem

Let (X, T) be the two-graph corresponding to a switching class S. Let D be the corresponding double cover. Then the following are equivalent:
(a) (X, T) is homogeneous;
(b) D is homogeneous (as a structure with a partition into parts of size 2 in addition to the graph structure);
(c) D is an EPPA-witness for partial isomorphisms between graphs in S. In particular D is an EPPA-witness for any graph in S.

Theorem

Let (X, T) be the two-graph corresponding to a switching class S. Let D be the corresponding double cover. Then the following are equivalent:
(a) (X, T) is homogeneous;
(b) D is homogeneous (as a structure with a partition into parts of size 2 in addition to the graph structure);
(c) D is an EPPA-witness for partial isomorphisms between graphs in S. In particular D is an EPPA-witness for any graph in S.

Now the natural question is: which are the homogeneous two-graphs? It turns out there are very few:

Theorem

Apart from the complete and null two-graphs, there are just two homogeneous two-graphs, on 6 and 10 points respectively.

Case $n=6$

The double cover is the 1-skeleton of the icosahedron. There are four graphs in the switching class, falling into two complementary pairs:

- a 5-cycle with an isolated vertex (the spokeless wheel), and its complement, with automorphism group dihedral of order 10;
- a triangle with a pendant edge at each vertex (the legged triangle) and its complement, with automorphism group dihedral of order 6.
We claim that in all cases the icosahedron is a minimal EPPA witness. It is enough to consider one of each pair.

Case $n=6$

The double cover is the 1-skeleton of the icosahedron. There are four graphs in the switching class, falling into two complementary pairs:

- a 5-cycle with an isolated vertex (the spokeless wheel), and its complement, with automorphism group dihedral of order 10;
- a triangle with a pendant edge at each vertex (the legged triangle) and its complement, with automorphism group dihedral of order 6.
We claim that in all cases the icosahedron is a minimal EPPA witness. It is enough to consider one of each pair.
E.g. for the spokeless wheel, the only primitive but not 2-transitive groups of degree n with $6<n<12$ having order divisible by 10 are S_{5} and A_{5} (degree 10); up to complementation, the corresponding rank 3 graph is the Petersen graph. This graph contains 5-cycles, but any point outside a 5 -cycle is joined to a point in the cycle. In its complement $L\left(K_{5}\right)$, any vertex outside a 5 -cycle is joined to two vertices of the cycle. So neither is an EPPA witness.

