# Lebesgue measure-preserving maps on one-dimensional manifolds

Jernej Činč

ICTP Trieste & University of Maribor

Conference on Generic Structures 2023

Based on joint works with Jozef Bobok (ČVUT Prague), Piotr Oprocha (AGH Krakow & IRAFM) and Serge Troubetzkoy (Aix-Marseille).







Our papers I will mention during the talk

- Bobok, Č., Oprocha, Troubetzkoy, Periodic points and shadowing property for generic Lebesgue measure preserving interval maps, Nonlinearity 35 (2022), 2534-2557.
- Bobok, Č., Oprocha, Troubetzkoy, S-limit shadowing is generic for continuous Lebesgue measure preserving circle maps, Ergodic Th. & Dyn. Sys., 43 (1), 2023, 78–98.
- Č., Oprocha, Parametrized families of pseudo-arc attractors: physical measures and prime ends rotations, Proc. Lond. Math. Soc. (3), 125 (2), 2022, 318–357.
- Bobok, Č., Oprocha, Troubetzkoy, Are generic dynamical properties stable under composition with rotations?, arXiv:2207.07186, July 2022.

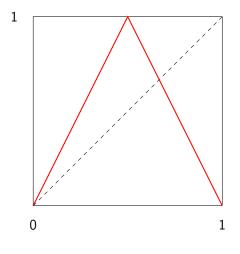
## Spaces $C_{\lambda}(\mathbb{S}^1)$ and $C_{\lambda}(I)$

- λ the Lebesgue measure on unit circle S<sup>1</sup> and on unit interval *I*. Let *M* ∈ {S<sup>1</sup>, *I*}.
- 2. main spaces

 $C_{\lambda}(M) := \{ f \in C(M); \forall A \subset M, A \text{ Borel} : \lambda(A) = \lambda(f^{-1}(A)) \},$ 

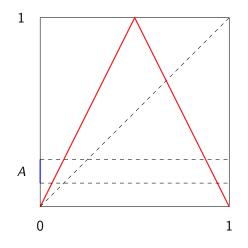
- 3. we endow the set  $C_{\lambda}(M)$  with the metric  $\rho$  of uniform convergence.
- 4. Obs:  $C_{\lambda}(M, \rho)$  is a complete metric space.
- 5. a property *P* is typical in  $(C_{\lambda}(M, \rho) \equiv \text{ the set of all maps})$  with the property *P* is residual ( $\equiv \text{ contains dense } G_{\delta} \text{ set}$ ), maps bearing a typical property are called generic.

Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



Map  $T_2$  preserves  $\lambda$ .

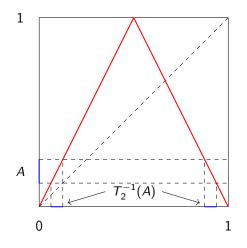
Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



Map  $T_2$  preserves  $\lambda$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 

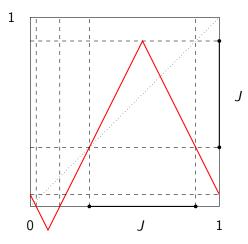


Map  $T_2$  preserves  $\lambda$ .

・ロト ・ 日 ト ・ モ ト ・ モ ト

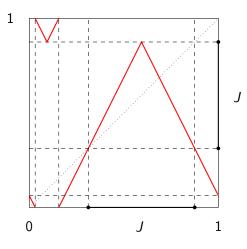
э

# Another example only in $\mathbb{S}^1$



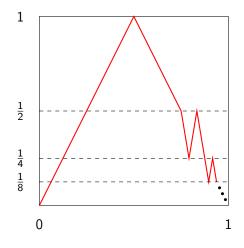
◆□> ◆□> ◆三> ◆三> ● □ ● ● ●

Another example only in  $\mathbb{S}^1$ 



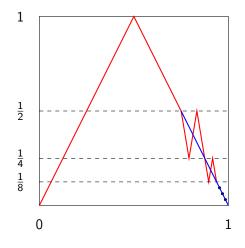
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

#### Yet another example



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ の < ⊙

#### Yet another example



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ の < ⊙

#### A useful basic criterion

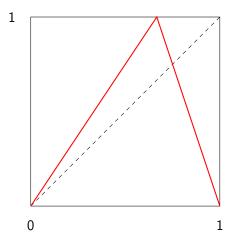
Observation: A map  $f \in C(M)$  is in  $C_{\lambda}(M) \iff$  for any nondegenerate arc  $J \subset M$ ,

$$\sum_{K \in \text{Comp}(f^{-1}(J))} \frac{\lambda(K)}{\lambda(J)} = 1,$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

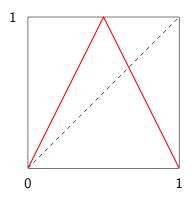
where  $\text{Comp}(f^{-1}(J))$  denotes the set of all connected components of  $f^{-1}(J)$ .

#### Another example

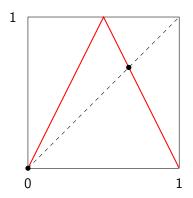


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

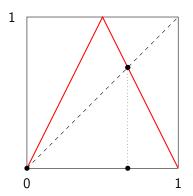
Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



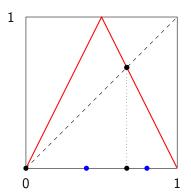
Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



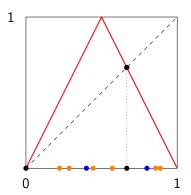
Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



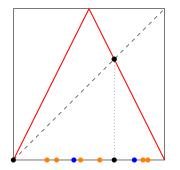
Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 

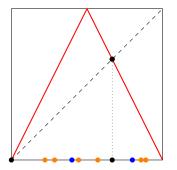


Denote by  $\operatorname{Per}(f, n)$  the set of periodic points of period n of  $f: M \to M$  and let  $\operatorname{Per}(f) = \bigcup_{n \in \mathbb{N}} \operatorname{Per}(f, n)$ .  $\overline{\operatorname{Per}(T_2)} = M$ .

ヘロト 人間ト 人造ト 人造ト

э

Ex:  $T_2: M \to M$  defined by  $T_2(x) = \min_{x \in M} \{2x, 2-2x\}.$ 



Denote by  $\operatorname{Per}(f, n)$  the set of periodic points of period n of  $f: M \to M$  and let  $\operatorname{Per}(f) = \bigcup_{n \in \mathbb{N}} \operatorname{Per}(f, n)$ .  $\overline{\operatorname{Per}(T_2)} = M$ . Denote by  $C_{DP}(M)$  the set of maps  $f \in C(M)$  such that  $\overline{\operatorname{Per}(f)} = M$ . Dense periodicity is a prerequisite for "chaoticity".

#### Relation to dense periodicity on I

Rem: Let  $f \in C(I)$ . The following conditions are equivalent.

- (i) f preserves a nonatomic probability measure  $\mu$  with supp  $\mu = I$ .
- (ii) There exists a homeomorphism h of I such that  $h \circ f \circ h^{-1} \in C_{\lambda}(I)$ .

(iii)  $f \in C_{DP}(I)$ .

For  $C_{\mu}(I)$ , supp  $\mu = I$ , nonatomic all topological "generic properties" can be translated to the complete metric space  $(C_{\mu}(I), \rho)$ 

#### Relation to dense periodicity on $\mathbb{S}^1$

Rem: Let  $f \in C(\mathbb{S}^1)$ , then (i) and (ii) are equivalent, and (iii) implies (i).

(i) f preserves a nonatomic probability measure  $\mu$  with supp  $\mu = \mathbb{S}^1$ .

(ii) There exists a homeomorphism h of  $\mathbb{S}^1$  such that  $h \circ f \circ h^{-1} \in C_{\lambda}(\mathbb{S}^1)$ .

#### (iii) $f \in C_{DP}(\mathbb{S}^1)$ .

Furthermore, if  $Per(f) \neq \emptyset$ , we have (i) implies (iii). Otherwise f is conjugate to an irrational rotation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma: Let  $f \in C(\mathbb{S}^1)$ . If  $\overline{\operatorname{Rec}(f)} = \mathbb{S}^1$  and  $\operatorname{Per}(f) \neq \emptyset$ , then  $\overline{\operatorname{Per}(f)} = \mathbb{S}^1$ .

### Periodic points on I

Fix(f, k) – fixed points of  $f^k$ , Per(f, k) – points of period k for f,  $Per(f) = \bigcup_{k \ge 1} Per(f, k).$ 

а b h а h

Thm (BČOT, 2021): For  $C_{\lambda}(I)$  generic map and  $\forall k$ :

- 1. Fix(f, k) is a Cantor set,
- Per(f, k) is a relatively open dense subset of Fix(f, k),
- 3. Fix(f, k) has Hausdorff dimension and lower box dimension zero.
  - In particular, Per(f, k) has Hausdorff dimension and lower box dimension zero,
  - the Hausdorff dimension of Per(f) is zero.
- Per(f, k) and thus also Fix(f, k) both have upper box dimension one.

By Schmeling and Winkler (1995) upper box dimension of a graph of a generic map from  $C_{\lambda}(I)$  is 2.

#### Periodic points on $\mathbb{S}^1$

 $C_{\lambda,d}(\mathbb{S}^1)$  – continuous circle maps of degree *d* preserving Lebesgue measure  $\lambda$ .

- 1. when  $d \in \mathbb{Z} \setminus \{1\}$ , generic maps in  $C_{\lambda,d}(\mathbb{S}^1)$  satisfy Theorem from the previous slide.
- 2. the case of  $C_{\lambda,1}(\mathbb{S}^1)$  is more delicate, since the set contains irrational rotations.
  - 2.1 in particular, there are open sets U in  $C_{\lambda,1}(\mathbb{S}^1)$  with  $\operatorname{Per}(k, f) = \emptyset$  for every  $f \in U$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Circle maps of degree 1

 $\mathcal{C}_{p} := \{ f \in \mathcal{C}_{\lambda,1}(\mathbb{S}^{1}) : f \text{ has a transverse } x \in \operatorname{Per}(f,p) \}.$ 

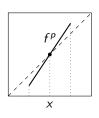
Thm (BČOT, 2021): For  $\overline{C_p}$  generic map and  $\forall k \ge 1$ : 1. Fix(f, kp) is a Cantor set,

2.  $\operatorname{Per}(f, kp)$  is a relatively open dense  $\subset \operatorname{Fix}(f, kp)$ ,

- 3. Fix(f, kp) has Hausdorff dimension and lower box dimension zero.
  - In particular, Per(f, kp) has Hausdorff dimension and lower box dimension zero,

- the Hausdorff dimension of Per(f) is zero.
- Per(f, kp) and thus also Fix(f, kp) both have upper box dimension one.

The remainder  $C_{\lambda,1}(\mathbb{S}^1) \setminus \bigcup_{p \ge 1} \overline{C_p}$  consists of irrational circle rotations.



#### Shadowing properties

- 1. (X, T) dynamical system
- 2. a sequence  $(x_n)_{n\geq 1}$  is a  $\delta$ -pseudo orbit if  $d(T(x_n), x_{n+1}) < \delta$  for  $n \geq 1$ .
- 3. a point  $z \in X$   $\varepsilon$ -traces  $\delta$ -pseudo orbit if  $d(T^n(z), x_n) < \varepsilon$  for  $n \ge 1$ .
- 4. (X, T) has shadowing property if for every  $\varepsilon > 0$  there is  $\delta > 0$  such that every  $\delta$ -pseudo orbit can be  $\varepsilon$ -traced.
- 5. (X, T) has limit shadowing property if for every sequence  $(x_n)_{n\geq 1} \subset X$  so that

$$d(T(x_n), x_{n+1}) \rightarrow 0$$
 when  $n \rightarrow \infty$ 

(asymptotic pseudo orbit) there exists  $z \in X$  such that

$$d(T^n(z), x_n) \to 0 \text{ as } n \to \infty.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Shadowing results

S-limit shadowing: for every  $\varepsilon > 0$  there exists  $\delta > 0$  so that

- 1. for every  $\delta$ -pseudo orbit  $\mathbf{y} := (y_n)_{n \ge 1}$  we can find a corresponding point  $z \in X$  which  $\varepsilon$ -traces  $\mathbf{y}$ ,
- 2. for every asymptotic  $\delta$ -pseudo orbit  $\mathbf{y} := (y_n)_{n \ge 1}$  of f, there is  $z \in X$  which  $\varepsilon$ -traces  $\mathbf{y}$  and  $\lim_{n \to \infty} d(y_n, f^n(z)) = 0$ .

#### Shadowing results

S-limit shadowing: for every  $\varepsilon > 0$  there exists  $\delta > 0$  so that

- 1. for every  $\delta$ -pseudo orbit  $\mathbf{y} := (y_n)_{n \ge 1}$  we can find a corresponding point  $z \in X$  which  $\varepsilon$ -traces  $\mathbf{y}$ ,
- 2. for every asymptotic  $\delta$ -pseudo orbit  $\mathbf{y} := (y_n)_{n \ge 1}$  of f, there is  $z \in X$  which  $\varepsilon$ -traces  $\mathbf{y}$  and  $\lim_{n \to \infty} d(y_n, f^n(z)) = 0$ .

Thm (Bobok, Č., Oprocha, Troubetzkoy, 2022/2023): Shadowing is a typical property in  $C_{\lambda}(I)$ . S-limit shadowing is a typical property for maps from  $C_{\lambda}(\mathbb{S}^1)$ .

Cor: Limit shadowing and shadowing are typical properties for maps from  $C_{\lambda}(\mathbb{S}^1)$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Shadowing results

S-limit shadowing: for every  $\varepsilon > 0$  there exists  $\delta > 0$  so that

- 1. for every  $\delta$ -pseudo orbit  $\mathbf{y} := (y_n)_{n \ge 1}$  we can find a corresponding point  $z \in X$  which  $\varepsilon$ -traces  $\mathbf{y}$ ,
- 2. for every asymptotic  $\delta$ -pseudo orbit  $\mathbf{y} := (y_n)_{n \ge 1}$  of f, there is  $z \in X$  which  $\varepsilon$ -traces  $\mathbf{y}$  and  $\lim_{n \to \infty} d(y_n, f^n(z)) = 0$ .

Thm (Bobok, Č., Oprocha, Troubetzkoy, 2022/2023): Shadowing is a typical property in  $C_{\lambda}(I)$ . S-limit shadowing is a typical property for maps from  $C_{\lambda}(\mathbb{S}^1)$ .

Cor: Limit shadowing and shadowing are typical properties for maps from  $C_{\lambda}(\mathbb{S}^1)$ .

Up to our knowledge, it is the first result showing that limit shadowing is typical (previously, only results on density were known - e.g. on  $n \ge 2$ -dimensional manifolds)

#### Invitation to the upcoming talk

Thm (Č., Oprocha, 2023) The sets of all maps  $\mathcal{T}_{\mathbb{S}^1} \subset C_{\lambda}(\mathbb{S}^1)$  and  $\mathcal{T}_I \subset C_{\lambda}(I)$  satisfying "crookedness condition" are generic.

Rem: This implies that inverse limit  $\lim_{I \to \infty} (\mathbb{S}^1, f)$  for any  $f \in \mathcal{T}_{\mathbb{S}^1}$  with degree 1 is the pseudo-circle and inverse limit  $\lim_{I \to \infty} (I, g)$  for any  $g \in \mathcal{T}_I$  is the pseudo-arc.

#### Invitation to the upcoming talk

Thm (Č., Oprocha, 2023) The sets of all maps  $\mathcal{T}_{\mathbb{S}^1} \subset C_{\lambda}(\mathbb{S}^1)$  and  $\mathcal{T}_I \subset C_{\lambda}(I)$  satisfying "crookedness condition" are generic.

Rem: This implies that inverse limit  $\lim_{I \to \infty} (\mathbb{S}^1, f)$  for any  $f \in \mathcal{T}_{\mathbb{S}^1}$  with degree 1 is the pseudo-circle and inverse limit  $\lim_{I \to \infty} (I, g)$  for any  $g \in \mathcal{T}_I$  is the pseudo-arc.

Piotr will say more about that...

Do generic dynamical properties commute with rotations? For  $\alpha \in [0, 1)$  we define the map  $r_{\alpha}$ :  $\mathbb{S}^1 \to \mathbb{S}^1$  as

$$\begin{split} r_{\alpha}(x) &:= x \cdot e^{2\pi i \alpha}, \ x \in \mathbb{S}^1 \\ \text{and the operator } \mathcal{T}_{\alpha,\beta} \colon \ \mathcal{C}_{\lambda}(\mathbb{S}^1) \to \mathcal{C}_{\lambda}(\mathbb{S}^1) \text{ by} \\ \mathcal{T}_{\alpha,\beta}[f] &:= r_{\alpha} \circ f \circ r_{\beta}. \end{split}$$

Do generic dynamical properties commute with rotations? For  $\alpha \in [0, 1)$  we define the map  $r_{\alpha}$ :  $\mathbb{S}^1 \to \mathbb{S}^1$  as

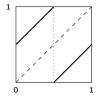
$$r_{\alpha}(x) := x \cdot e^{2\pi i \alpha}, \ x \in \mathbb{S}^{1}$$

and the operator  $\mathcal{T}_{lpha,eta}\colon \ \mathcal{C}_\lambda(\mathbb{S}^1) o \mathcal{C}_\lambda(\mathbb{S}^1)$  by

$$T_{\alpha,\beta}[f] := r_{\alpha} \circ f \circ r_{\beta}.$$

Question: if a property *P* is typical, does the typical *f* satisfy property *P* for "most"  $(\alpha, \beta)$ ?

Thm (Athreya, Boshernitzan, 2013): For any interval exchange transformation (IET) f the map  $f \circ r_{\beta}$  is uniquely ergodic for almost every  $\beta \in [0, 1)$ .

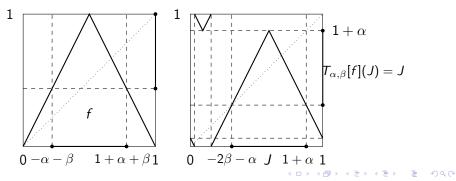


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Def: A map  $f : X \to X$  is locally eventually onto (leo), if for every open  $U \subset X$  there exists  $n \ge 1$  such that  $f^n(U) = X$ .

Def: A map  $f : X \to X$  is locally eventually onto (leo), if for every open  $U \subset X$  there exists  $n \ge 1$  such that  $f^n(U) = X$ .

Example: Let f be a full tent map viewed as a circle map. For  $\alpha < -\beta \pmod{1}$  and  $\alpha + \beta > -\frac{1}{2} \pmod{1}$  we define the interval  $J = J_{\alpha,\beta} := [-2\beta - \alpha, 1 + \alpha] \pmod{1}$ . We obtain that  $T_{\alpha,\beta}[f](J) = J$ . Therefore,  $T_{\alpha,\beta}[f]$  is not transitive for an open subset of  $(\alpha, \beta) \in [0, 1)^2$ .



Bobok and Troubetzkoy (2020) showed the generic map f in  $C_{\lambda}(I)$  is leo. Here we get a much stronger result in  $C_{\lambda}(\mathbb{S}^1)$ .

Bobok and Troubetzkoy (2020) showed the generic map f in  $C_{\lambda}(I)$  is leo. Here we get a much stronger result in  $C_{\lambda}(\mathbb{S}^1)$ .

Thm (Bobok, Č, Oprocha, Troubetzkoy (2022)): There is an open dense set  $O \subset C_{\lambda}(\mathbb{S}^1)$  such that: 1. each  $f \in O$  is leo.

2. for each pair  $\alpha, \beta \in [0, 1)$ , each  $f \in O$  the map  $T_{\alpha, \beta}[f] \in O$ .

#### Some ideas on the proof of openness of leo

Lemma: Let  $\mathcal{A}$  denote the collection of all arcs in  $\mathbb{S}^1$ . There are positive constants  $\kappa_n, \delta_n, \eta_n$  and a dense set of maps  $\{h_n\} \subset PA_{\lambda}(\mathbb{S}^1)$  which satisfy for each  $n \geq 1$ :

(i) For each  $A \in \mathcal{A}$  either  $h_n(A) = \mathbb{S}^1$  or

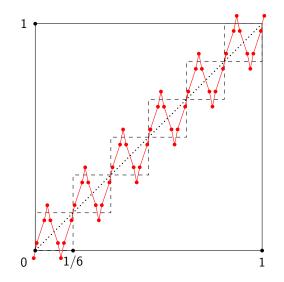
 $\lambda(h_n(A)) \geq (1+\delta_n)\lambda(A)$ 

(ii) each  $h_n$  is leo.

(iii) For any arc A with  $\lambda(A) > 1 - \eta_n$  it follows that  $h_n(A) = \mathbb{S}^1$ .

(iv) Let  $A \in \mathcal{A}$  and  $\lambda(A) < \alpha_n := \min\{\eta_n/2, \kappa_n/3\}$  then  $h_n^{-1}(A)$  has at least two non-degenerate components.

# An example of a map $h_n$



| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○ ○ ○

#### Questions

Question 1: Does there exist an open dense set of leo volume preserving noninvertible maps that commute with rotations on higher-dimensional tori?

Question 2: Is s-limit shadowing typical also for  $C_{\lambda}(I)$ ?

Question 3: Is s-limit shadowing typical also for volume preserving homeomorphisms on manifolds of dimension at least 2?

Question 4: What properties are typical for  $C_{\lambda}(\mathbb{S}^1)$  and  $C_{\lambda}(I)$  if we equip the space with some smoother topology?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●