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Category of measurable spaces with Markov kernels as
morphisms [Lawvere 1962, Giry 1982]

objects: measurable spaces
morphisms: Markov kernels

A Markov kernel from (X ,A) to (Y ,B) is a map κ : X × B → [0, 1] s.t.:

▶ κ(x , ·) is a probability measure on (Y ,B), x ∈ X

▶ κ(·,B) is a measurable map, B ∈ B

composition of morphisms: composition of Markov kernels

(X ,A)
κ→ (Y ,B) κ′

→ (Z , C)

κ′ ◦ κ(x ,C ) =

∫
Y
κ′(y ,C ) dκ(x , ·), x ∈ X ,C ∈ C

The identity morphism for (X ,A) is

1(X ,A)(x ,A) = δx(A), x ∈ X ,A ∈ A
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□-graphons

Definition
A □-graphon on a probability space (X ,A, π) is a finite measure µ on
(X ,A)2.

In graph terminology:
π = the distribution of vertices
µ = the distribution of edges
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Category of □-graphons

objects: □-graphons
morphisms:

µX ... □-graphon on (X ,A, πX )
µY ... □-graphon on (Y ,B, πY )

A morphism from µX to µY is a Markov kernel κ : X × B → [0, 1] from
(X ,A) to (Y ,B) such that:

▶ πY (B) =
∫
X
κ(x ,B) dπX (x), B ∈ B

▶ µY (B1 × B2) =
∫
X2 κ(x1,B1)κ(x2,B2) dµX (x1, x2), B1,B2 ∈ B

composition of morphisms: composition of Markov kernels

Definition (preorder ⪯)

µY ⪯ µX ⇔ there is a morphism from µX to µY
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Convergence (essentially defined by Kunszenti-Kovács,
Lovász, Szegedy, 2019)
Fk =

(
{1, . . . , k}, 2{1,...,k}, the normalized counting measure

)
, k ∈ N

□-graphons on Fk ⊆ Rk2

Definition (k-shapes)
For a □-graphon µ we define its k-shape Sk(µ) as

Sk(µ) = cl {ν ⪯ µ : ν is a □-graphon on Fk}

Definition (convergence)
µ, µn, n ∈ N ... □-graphons

(µn)
∞
n=1 is convergent ⇔ (Sk(µn))

∞
n=1 is convergent in the Vietoris

topology of compact subsets of Rk2
, k ∈ N

µ is a limit of (µn)
∞
n=1 ⇔ Sk(µ) is the limit of (Sk(µn))

∞
n=1 in the

Vietoris topology, k ∈ N
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Existence of limit objects

Theorem
Every convergent sequence (µn)

∞
n=1 of □-graphons has a limit.

Sketch of the proof:

ν ... a □-graphon on a finite probability space (Ω, 2Ω, πΩ)

We say that ν is achievable if, for every n ∈ N, there is a □-graphon
γn ⪯ µn on (Ω, 2Ω, πn

Ω) for some probability measure πn
Ω such that

limn→∞ πn
Ω = πΩ

limn→∞ γn = ν
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After passing to a subsequence, there is a countable upward directed set H
of achievable □-graphons containing a dense subset of limn→∞ Sk(µn) for
every k ∈ N.

µn

ν3
n

ν1
n ν2

n

ν1 ν2

ν3

Figure: morphism, convergence

ν1, ν2 achievable ⇒ there
is ν3 ⪰ ν1, ν2 such that, after passing
to a subsequence, ν3 is achievable.

Use the diagonal method.
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Find a cofinal increasing sequence (νi )
∞
i=1 of elements of H. Using

monotonicity, (νi )∞i=1 has a limit.

νi ... a □-graphon on (Ωi , 2Ωi , π̃i ), i ∈ N

Y :=
∏∞

i=1 Ωi

BY ... the product sigma-algebra on Y

There is a probability measure πY on (Y ,B) and a □-graphon µY on
(Y ,B, πY ) such that

µY = lim
i→∞

νi .

The limit of (νi )∞i=1 is also the limit of (µn)
∞
n=1.
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