Categorical approach to graph limits

Martin Doležal

joint work with Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences

45th Conference on Generic Structures Będlewo, 23–28 October 2023

A B A A B A

Category of measurable spaces with Markov kernels as morphisms [Lawvere 1962, Giry 1982]

- objects: measurable
- morphisms:

measurable spaces Markov kernels

A Markov kernel from (X, \mathcal{A}) to (Y, \mathcal{B}) is a map $\kappa \colon X \times \mathcal{B} \to [0, 1]$ s.t.:

- $\kappa(x, \cdot)$ is a probability measure on (Y, \mathcal{B}) , $x \in X$
- $\kappa(\cdot,B)$ is a measurable map, $B\in\mathcal{B}$

• composition of morphisms: composition of Markov kernels

$$(X, \mathcal{A}) \stackrel{\kappa}{\to} (Y, \mathcal{B}) \stackrel{\kappa'}{\to} (Z, \mathcal{C})$$

 $\kappa' \circ \kappa(x, \mathcal{C}) = \int_{Y} \kappa'(y, \mathcal{C}) d\kappa(x, \cdot), \quad x \in X, \mathcal{C} \in \mathcal{C}$

The identity morphism for (X, \mathcal{A}) is

$$1_{(X,\mathcal{A})}(x,A) = \delta_x(A), \quad x \in X, A \in \mathcal{A}$$

□-graphons

Definition

A \square -graphon on a probability space (X, \mathcal{A}, π) is a finite measure μ on $(X, \mathcal{A})^2$.

In graph terminology:

 π = the distribution of vertices μ = the distribution of edges

Category of □-graphons

objects:

□-graphons

• morphisms:

$$\mu_X \dots \Box$$
-graphon on (X, \mathcal{A}, π_X)
 $\mu_Y \dots \Box$ -graphon on (Y, \mathcal{B}, π_Y)

A morphism from μ_X to μ_Y is a Markov kernel $\kappa \colon X \times \mathcal{B} \to [0, 1]$ from (X, \mathcal{A}) to (Y, \mathcal{B}) such that:

•
$$\pi_Y(B) = \int_X \kappa(x, B) d\pi_X(x), \quad B \in \mathcal{B}$$

• $\mu_Y(B_1 \times B_2) = \int_{X^2} \kappa(x_1, B_1) \kappa(x_2, B_2) d\mu_X(x_1, x_2), \quad B_1, B_2 \in \mathcal{B}$

composition of morphisms: composition of Markov kernels

Definition (preorder \leq)

 $\mu_Y \preceq \mu_X \quad \Leftrightarrow \quad \text{there is a morphism from } \mu_X \text{ to } \mu_Y$

イロト 不得下 イヨト イヨト

Convergence (essentially defined by Kunszenti-Kovács, Lovász, Szegedy, 2019) $\mathcal{F}_k = (\{1, \ldots, k\}, 2^{\{1, \ldots, k\}}, \text{the normalized counting measure}), \quad k \in \mathbb{N}$ \Box -graphons on $\mathcal{F}_k \subseteq \mathbb{R}^{k^2}$

Definition (k-shapes)

For a \Box -graphon μ we define its k-shape $\mathbb{S}_k(\mu)$ as

 $\mathbb{S}_k(\mu) = \mathsf{cl} \{ \nu \preceq \mu : \nu \text{ is a } \Box \text{-graphon on } \mathcal{F}_k \}$

Definition (convergence)

 $\mu, \mu_n, n \in \mathbb{N} \dots \square$ -graphons

 $(\mu_n)_{n=1}^{\infty}$ is convergent $\Leftrightarrow (\mathbb{S}_k(\mu_n))_{n=1}^{\infty}$ is convergent in the Vietoris topology of compact subsets of \mathbb{R}^{k^2} , $k \in \mathbb{N}$

 μ is a limit of $(\mu_n)_{n=1}^{\infty} \Leftrightarrow \mathbb{S}_k(\mu)$ is the limit of $(\mathbb{S}_k(\mu_n))_{n=1}^{\infty}$ in the Vietoris topology, $k \in \mathbb{N}$

Existence of limit objects

Theorem

Every convergent sequence $(\mu_n)_{n=1}^{\infty}$ of \Box -graphons has a limit.

Sketch of the proof:

 ν ... a \Box -graphon on a finite probability space $(\Omega, 2^{\Omega}, \pi_{\Omega})$

We say that ν is achievable if, for every $n \in \mathbb{N}$, there is a \Box -graphon $\gamma_n \preceq \mu_n$ on $(\Omega, 2^{\Omega}, \pi_{\Omega}^n)$ for some probability measure π_{Ω}^n such that

• $\lim_{n\to\infty}\pi_{\Omega}^n=\pi_{\Omega}$

•
$$\lim_{n\to\infty} \gamma_n = \nu$$

After passing to a subsequence, there is a countable upward directed set H of achievable \Box -graphons containing a dense subset of $\lim_{n\to\infty} \mathbb{S}_k(\mu_n)$ for every $k \in \mathbb{N}$.

 $u^1, \nu^2 \text{ achievable } \Rightarrow \text{ there}$ is $\nu^3 \succeq \nu^1, \nu^2$ such that, after passing to a subsequence, ν^3 is achievable.

Use the diagonal method.

Figure: morphism, convergence

< 回 > < 回 > < 回 >

Find a cofinal increasing sequence $(\nu_i)_{i=1}^{\infty}$ of elements of *H*. Using monotonicity, $(\nu_i)_{i=1}^{\infty}$ has a limit.

 $\nu_i \dots$ a \Box -graphon on $(\Omega_i, 2^{\Omega_i}, \tilde{\pi}_i), i \in \mathbb{N}$

$$Y := \prod_{i=1}^{\infty} \Omega_i$$

 \mathcal{B}_Y ... the product sigma-algebra on Y

There is a probability measure π_Y on (Y, \mathcal{B}) and a \Box -graphon μ_Y on (Y, \mathcal{B}, π_Y) such that

$$\mu_{\mathbf{Y}} = \lim_{i \to \infty} \nu_i.$$

The limit of $(\nu_i)_{i=1}^{\infty}$ is also the limit of $(\mu_n)_{n=1}^{\infty}$.