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Structure theorems for t.d.s

Let (G ,X ) be a topological dynamical system (t.d.s). That is:
X is a compact (Hausdorff) space. G is topological (Hausdorff)
group. Action denoted by gx for g ∈ G and x ∈ X .
G acts on X , G ↷ X : 1Gx = x , g(hx) = (gh)x .
Morphisms: ϕ : (G ,X ) → (G ,Y ), where, ϕ : X → Y - equivariant
continuous mapping (ϕ(g(x)) = g(ϕ(x)), for every x ∈ X and g ∈ G ):

X X

Y Y

g

ϕ

g

ϕ

Mostly G is Polish. The space X is not necessarily metrizable.
Fundamental question: What is the structure of t.d.s?
Standing assumption: (G ,X ) is minimal, that is every orbit,
G .x ≜ {g .x | g ∈ G} is dense.
Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro
(1975),Veech (1977),...
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Universal Minimal Spaces

Let G be a topological group. Key question: Can one capture all minimal G
(topological dynamical) systems with one simple (read minimal) system?

Definition
A universal minimal (G )-space (UMS) MG is a minimal G -space with the
property that every minimal G -space X is a factor of MG , i.e., there is a
continuous G -equivariant map from MG onto X .

Theorem (Ellis, 1960)
Let G be a topological group. There is a unique, up to isomorphism,
universal minimal (G )-space.

In addition to Ellis’ proof, proofs were given by Auslander (1988) and
Uspenskij (2000). Existence is easy: Let {Mα}α∈I be an enumeration of
all minimal G -spaces. Let MG be a minimal subsystem of

∏
α∈I Mα.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 3



Universal Minimal Spaces

Let G be a topological group. Key question: Can one capture all minimal G
(topological dynamical) systems with one simple (read minimal) system?

Definition
A universal minimal (G )-space (UMS) MG is a minimal G -space with the
property that every minimal G -space X is a factor of MG , i.e., there is a
continuous G -equivariant map from MG onto X .

Theorem (Ellis, 1960)
Let G be a topological group. There is a unique, up to isomorphism,
universal minimal (G )-space.

In addition to Ellis’ proof, proofs were given by Auslander (1988) and
Uspenskij (2000). Existence is easy: Let {Mα}α∈I be an enumeration of
all minimal G -spaces. Let MG be a minimal subsystem of

∏
α∈I Mα.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 3



Universal Minimal Spaces

Let G be a topological group. Key question: Can one capture all minimal G
(topological dynamical) systems with one simple (read minimal) system?

Definition
A universal minimal (G )-space (UMS) MG is a minimal G -space with the
property that every minimal G -space X is a factor of MG , i.e., there is a
continuous G -equivariant map from MG onto X .

Theorem (Ellis, 1960)
Let G be a topological group. There is a unique, up to isomorphism,
universal minimal (G )-space.

In addition to Ellis’ proof, proofs were given by Auslander (1988) and
Uspenskij (2000). Existence is easy: Let {Mα}α∈I be an enumeration of
all minimal G -spaces. Let MG be a minimal subsystem of

∏
α∈I Mα.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 3



Universal Minimal Spaces

Let G be a topological group. Key question: Can one capture all minimal G
(topological dynamical) systems with one simple (read minimal) system?

Definition
A universal minimal (G )-space (UMS) MG is a minimal G -space with the
property that every minimal G -space X is a factor of MG , i.e., there is a
continuous G -equivariant map from MG onto X .

Theorem (Ellis, 1960)
Let G be a topological group. There is a unique, up to isomorphism,
universal minimal (G )-space.

In addition to Ellis’ proof, proofs were given by Auslander (1988) and
Uspenskij (2000). Existence is easy: Let {Mα}α∈I be an enumeration of
all minimal G -spaces. Let MG be a minimal subsystem of

∏
α∈I Mα.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 3



Universal Minimal Spaces

Let G be a topological group. Key question: Can one capture all minimal G
(topological dynamical) systems with one simple (read minimal) system?

Definition
A universal minimal (G )-space (UMS) MG is a minimal G -space with the
property that every minimal G -space X is a factor of MG , i.e., there is a
continuous G -equivariant map from MG onto X .

Theorem (Ellis, 1960)
Let G be a topological group. There is a unique, up to isomorphism,
universal minimal (G )-space.

In addition to Ellis’ proof, proofs were given by Auslander (1988) and
Uspenskij (2000). Existence is easy: Let {Mα}α∈I be an enumeration of
all minimal G -spaces. Let MG be a minimal subsystem of

∏
α∈I Mα.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 3



Universal Minimal Spaces

Let G be a topological group. Key question: Can one capture all minimal G
(topological dynamical) systems with one simple (read minimal) system?

Definition
A universal minimal (G )-space (UMS) MG is a minimal G -space with the
property that every minimal G -space X is a factor of MG , i.e., there is a
continuous G -equivariant map from MG onto X .

Theorem (Ellis, 1960)
Let G be a topological group. There is a unique, up to isomorphism,
universal minimal (G )-space.

In addition to Ellis’ proof, proofs were given by Auslander (1988) and
Uspenskij (2000). Existence is easy: Let {Mα}α∈I be an enumeration of
all minimal G -spaces. Let MG be a minimal subsystem of

∏
α∈I Mα.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 3



The Uniqueness of the Universal Minimal Space

It su�ces to show that a universal minimal G -space M is coalescent,

i.e. every G -epimorphism φ : M → M is an G -isomorphism.

Indeed If M1 and M2 are universal minimal G -spaces then by

universality we have epimorphisms φ1 : M1 → M2 and φ2 : M2 → M1.

If in addition M1 is coalescent, then φ2 ◦ φ1 must be an isomorphism,

and hence φ1 and φ2 are isomorphisms.

11 / 59
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A New Short Proof the Uniqueness of the Universal Minimal
Space (G. and Li)

Let M = X0 be universal and minimal. Let ψ : M → M be a

G -epimorphism. Fix an ordinal with |β| > |M2|.

Construct a tower of extensions of minimal G -spaces {Xα}0≤α≤β ,
φδ,α : Xα → Xδ with φδ,α = φδ,γ ◦ φγ,α for α ≥ γ ≥ δ by means of

trans�nite induction. If α is a successor ordinal, take an epimorphism

fα : M → Xα−1 using the universality of M and de�ne

(G ,Xα) = (G ,M), φα−1,α = fα ◦ ϕ, and for γ < α− 1, de�ne

φγ,α = φγ,α−1 ◦ φα−1,α. If α is a limit ordinal, de�ne Xα to be the

projective limit of {Xγ}0≤γ<α, and for γ < α, de�ne φγ,α : Xα → Xγ
to be the epimorphism coming from the projective limit.

Key property: For each ordinal γ < β, there exist distinct

xγ , yγ ∈ Xγ+1 with φγ,γ+1(xγ) = φγ,γ+1(yγ) , zγ .
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By the universality of (G ,M) one has an epimorphism M → Xβ . This

implies |Xβ| ≤ |M|.
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For each γ < β, since φγ+1,β is surjective, we can �nd x̃γ , ỹγ ∈ Xβ
with φγ+1,β(x̃γ) = xγ and φγ+1,β(ỹγ) = yγ . For any γ < α < β, one
has φγ+1,β(x̃α) = φγ+1,α(zα) = φγ+1,β(ỹα), and
φγ+1,β(x̃γ) = xγ 6= yγ = φγ+1,β(ỹγ), and hence (x̃α, ỹα) 6= (x̃γ , ỹγ).

This implies that the map {γ| 0 ≤ γ < β} → Xβ × Xβ given by

γ 7→ (x̃γ , ỹγ) is injective, which in turn implies that |β| ≤ |X 2
β |.

Putting all the inequalities together including our initial choice

|β| > |M2|, we get |M2| < |β| ≤ |X 2
β | ≤ |M2|, which is impossible.
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Calculation of UMS

If G is compact then (G ,MG ) = (G ,G ).

Definition
If MG = {•}, then we call G extremely amenable.

Note G is extremely amenable iff every G -system has a G -fixed point.

Theorem (Gromov & Milman, 1983)
U(H) the unitary group of the infinite-dimensional separable Hilbert space
H with the strong operator topology is extremely amenable.

Theorem (Pestov, 1998)

Let Homeo+(S
1) be the group of orientation-preserving homeomorphisms

of the circle equipped with the compact-open topology.

(Homeo+(S
1),MHomeo+(S1)) = (Homeo+(S

1),S1).
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Pestov’s questions

The revitalization of the universal minimal space theory is due to Vladimr
Pestov. He has stated several influential questions in particular in his 2006
AMS University Lecture Series monograph Dynamics of infinite-dimensional
groups: the Ramsey-Dvoretzky-Milman phenomenon.

Question (Pestov)
Let Q be the Hilbert cube (or a connected manifold of dimension ≥ 2). Is
it true that

(Homeo(Q),MHomeo(Q)) = (Homeo(Q),Q)?
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The Space of Maximal Chains

The hyperspace of X :

Exp(X ) = {V ⊂ X | ∅ 6= V is closed} equipped with the Vietoris

topology :

〈U1,U2, . . .Un〉 = {F ∈ Exp(X )|F ⊂
n⋃

k=1

Uk , F∩Uk 6= ∅, k = 1 . . . , n}

c ∈ Exp(Exp(X )) is a chain: A,B ∈ c ⇒ A ⊂ B ∨ B ⊂ A.

c ∈ Exp(Exp(X )) is a maximal chain if for any chain d , c ⊂ d

implies c = d .

The space of maximal chains:

Φ(X ) = {c ∈ Exp(Exp(X ))| c is a maximal chain}

Glasner-Weiss 2003: UHomeo(K) = Φ(K ), where Homeo(K ) is the

group of homeomorphisms of the Cantor space, K equipped with the

compact-open topology.
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Results using the maximal chain approach

Definition
(G ,X ) is called 3-transitive if |X | ≥ 3 and for all distinct a, b, c ∈ X and
distinct a′, b′, c ′ ∈ X , there is g ∈ G so that ga = a′, gb = b′ and gc = c ′.

Theorem (Uspenskij, 2000)
Let G be a topological group, then (G ,MG ) is not 3-transitive.

Thus (Homeo(Q),MHomeo(Q)) ̸= (Homeo(Q),Q).

Theorem (Glasner & Weiss, 2003)
Let Homeo(K ) be the homeomorphism group of the Cantor set equipped
with the compact-open topology. Then

(Homeo(K ),MHomeo(K)) = (Homeo(K ),Φ(K )).

Yonatan Gutman (IM PAN) Universal Minimal Spaces 6
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H-Homogeneous Spaces

De�nition

A zero-dimensional compact Hausdor� topological space X is called

h-homogeneous if every non-empty clopen subset of X is homeomorphic

to the entire space X.

De�nition

A Boolean algebra B is called homogeneous if for any nonzero element a

of B the relative algebra B|a = {x ∈ B : x ≤ a) is isomorphic to B.

Using Stone's Duality Theorem a zero-dimensional compact Hausdor�

h-homogeneous space X is the Stone dual of a homogeneous Boolean

Algebra, i.e. any such space is realized as the space of ultra�lters B∗ over a
homogeneous Boolean algebra B equipped with the topology given by the

base Na = {U ∈ B∗ : a ∈ U},
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Examples of H-Homogeneous Spaces

The countable atomless Boolean algebra is homogeneous. It

corresponds by Stone duality to the Cantor space K = {0, 1}N.
Every in�nite free Boolean algebra is homogeneous. These Boolean

algebras correspond by Stone duality to the generalized Cantor spaces,

{0, 1}κ, for in�nite cardinals κ

Let P(ω) be the Boolean algebra of all subsets of ω (the �rst in�nite

cardinal) and let �n ⊂ P(ω) be the ideal comprising the �nite subsets

of ω. De�ne the equivalence relations A ∼�n B , A,B ∈ P(ω), if and
only if A4B is in �n. The quotient Boolean algebra P(ω)/�n is

homogeneous. This Boolean algebra corresponds by Stone duality to

the corona ω∗ = βω \ ω, where βω denotes the Stone-Čech

compacti�cation of ω.
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The Universal Minimal Space of Homeomorphism Groups of
H-Homogeneous Spaces

Theorem (Glasner & G.)

Let X be a h-homogeneous zero-dimensional compact Hausdor�

topological space. Let G = Homeo(X ) equipped with the compact-open

topology, then UG = Φ(X ), the space of maximal chains on X .

Corollary: UHomeo(ω∗) = Φ(ω∗)!
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Connected Maximal chains

Definition
A maximal chain c ∈ Φ(X ) is connected iff c is connected as a compact
subspace of Exp(X ), equivalently, each member of c is connected.

Denote by Φc(X ) the space of connected maximal chains.

Theorem (Gutman, 2008)
Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2. Then
(Homeo(Q),Φc(Q)) is minimal.

Question (Pestov)
Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2. Does
it hold

(Homeo(Q),MHomeo(Q))) = (Homeo(Q),Φc(Q))?

Pestov: "Probably yes!"
Yonatan Gutman (IM PAN) Universal Minimal Spaces 7
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UMS of Homeo(high-dimensional manifold) is not metrizable

Definition
Let X be compact and U ⊂ X open. Denote by GU the rigid stabilizer of
U, i.e., the subgroup of all elements of G that fix all points in X \ U. A
subgroup G ≤ Homeo(X ) is called locally transitive if for every open
U ⊂ X and every x ∈ U, GUx contains a neighborhood of x .

Example
Let X be the Hilbert cube or a closed manifold of dimension 2 or higher.
Then any group containing one of the following groups is locally transitive:
Homeo0(X ), Homeo+(X ) (for X orientable), Diffeo0(X ) (for X smooth).

Theorem (G, Tsankov & Zucker, 2021)
Let X be a closed manifold of dimension at least 2 or the Hilbert cube and
let G be a locally transitive subgroup of Homeo(X ). Then the universal
minimal flow of G is not metrizable.
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Meagre orbits

We concentrate on the case of closed manifold of dimension at least 3 or
the Hilbert cube.

Theorem (Ben Yaacov, Melleray, Tsankov, 2017)
Let G be a Polish group. If MG is metrizable then it has a comeagre orbit.

Theorem (Angel, Kechris & Lyons, 2014)
Let G be a Polish group. Supposet (G ,X ) is minimal and
ϕ : (G ,X ) → (G ,Y ) is a factor map. If the orbit Gx0 is comeagre then the
orbit Gϕ(x0) is comeagre.

Theorem (G, Tsankov & Zucker, 2021)
Let X be a closed manifold of dimension at least 3 or the Hilbert cube and
let G be a locally transitive subgroup of Homeo(X ). Then (G ,Φc(X ) has
(only) meagre orbits.

Yonatan Gutman (IM PAN) Universal Minimal Spaces 9
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Rosendal’s Crierion

Definition
Let G be a Polish group. By the Birkhoff-Kakutani theorem it admits a
right-invariant metric d . Denote:

Gε = {g ∈ G : d(g , 1G ) < ε}.

Theorem (Rosendal)
Let G be a Polish group, and suppose Y is a Polish, topologically transitive
G -space. Then the following are equivalent:

1 All orbits in Y are meagre;
2 There is ε > 0 and a non-empty open U ⊆ Y such that for any

non-empty open V ⊆ U, there are non-empty open W0,W1 ⊆ V such
that (GεW0) ∩W1 = ∅.
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The Pseudoarc

Definition
A continuum is a compact, connected space. An open cover U0, . . . ,Un−1
of a continuum is called a chain cover if for all i , j < n,

Ui ∩ Uj ̸= ∅ ⇐⇒ |i − j | ≤ 1.

A continuum is chainable if every open cover admits a refinement that is a
chain cover. A continuum is indecomposable if it is not the union of two
proper subcontinua. It is hereditarily indecomposable if every subcontinuum
is indecomposable.

Theorem (Bing, 1951)
There is a unique, up to homeomorphism, non-degenerate (having more
than one point), chainable, hereditarily indecomposable continuum.

This space is referred to as the pseudoarc P .
Yonatan Gutman (IM PAN) Universal Minimal Spaces 11
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than one point), chainable, hereditarily indecomposable continuum.

This space is referred to as the pseudoarc P .
Yonatan Gutman (IM PAN) Universal Minimal Spaces 11



UMS of Homeo(Pseudoarc)

Let X be a compact space. Note that given a maximal chain c ∈ Φc(X ), it
has a minimal element, referred to as its root, r(c), which is a singleton.

Proposition
Let P be the pseudoarc. It holds Φc(P) = P.

Proof.
Let c1, c2 ∈ Φc(P). Assume r(c1) = r(c2) := r . We claim c1 = c2. Indeed
let C1 ∈ c1 and C2 ∈ c2. As r ∈ C1 ∩ C2 then C1 ∪ C2 is a continuum. By
its indecomposability either C1 ⊂ C2 or vice versa.

Question (Uspenskij, 2000)
Does it hold (Homeo(P),MHomeo(P)) = (Homeo(P),P)?
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