On Universal Minimal Spaces

Yonatan Gutman Institute of Mathematics Polish Academy of Sciences (IM PAN)

www.impan.pl/~gutman/

Based on joint works with Eli Glasner, Hanfeng Li, Todor Tsankov and Andy Zucker.

> *Conference on Generic Structures Będlewo, 23-28 October, 2023.*

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

- Mostly G is Polish. The space X is not necessarily metrizable.
- Fundamental question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

- Mostly G is Polish. The space X is not necessarily metrizable.
- Fundamental question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

- Mostly G is Polish. The space X is not necessarily metrizable.
- Fundamental question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

• Mostly G is Polish. The space X is not necessarily metrizable.

• Fundamental question: What is the structure of t.d.s?

- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

• Mostly G is Polish. The space X is not necessarily metrizable.

- Fundamental question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

- Mostly G is Polish. The space X is not necessarily metrizable.
- Fundamental question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

- Let (G, X) be a topological dynamical system (t.d.s). That is:
- X is a compact (Hausdorff) space. G is topological (Hausdorff) group. Action denoted by gx for $g \in G$ and $x \in X$.
- G acts on X, $G \curvearrowright X$: $1_G x = x$, g(hx) = (gh)x.
- Morphisms: φ : (G, X) → (G, Y), where, φ : X → Y equivariant continuous mapping (φ(g(x)) = g(φ(x)), for every x ∈ X and g ∈ G):

- Mostly G is Polish. The space X is not necessarily metrizable.
- Fundamental question: What is the structure of t.d.s?
- Standing assumption: (G, X) is minimal, that is every orbit, $G.x \triangleq \{g.x | g \in G\}$ is dense.
- Known structure theorems: Fustenberg (1963), Ellis-Glasner-Shapiro (1975),Veech (1977),...

Definition

A universal minimal (G)-space (UMS) M_G is a minimal G-space with the property that every minimal G-space X is a *factor* of M_G , i.e., there is a continuous G-equivariant map from M_G onto X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a unique, up to isomorphism, universal minimal (G)-space.

Definition

A universal minimal (G)-space (UMS) M_G is a minimal G-space with the property that every minimal G-space X is a *factor* of M_G , i.e., there is a continuous G-equivariant map from M_G onto X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a unique, up to isomorphism, universal minimal (G)-space.

Definition

A universal minimal (G)-space (UMS) M_G is a minimal G-space with the property that every minimal G-space X is a *factor* of M_G , i.e., there is a continuous G-equivariant map from M_G onto X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a unique, up to isomorphism, universal minimal (G)-space.

Definition

A universal minimal (G)-space (UMS) M_G is a minimal G-space with the property that every minimal G-space X is a *factor* of M_G , i.e., there is a continuous G-equivariant map from M_G onto X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a unique, up to isomorphism, universal minimal (G)-space.

Definition

A universal minimal (G)-space (UMS) M_G is a minimal G-space with the property that every minimal G-space X is a *factor* of M_G , i.e., there is a continuous G-equivariant map from M_G onto X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a unique, up to isomorphism, universal minimal (G)-space.

Definition

A universal minimal (G)-space (UMS) M_G is a minimal G-space with the property that every minimal G-space X is a *factor* of M_G , i.e., there is a continuous G-equivariant map from M_G onto X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a unique, up to isomorphism, universal minimal (G)-space.

The Uniqueness of the Universal Minimal Space

<ロト < 合 > < 言 > < 言 > こ う < で 11 / 59 • It suffices to show that a universal minimal G-space M is coalescent, i.e. every G-epimorphism $\phi: M \to M$ is an G-isomorphism.

- It suffices to show that a universal minimal G-space M is coalescent, i.e. every G-epimorphism $\phi: M \to M$ is an G-isomorphism.
- Indeed If M_1 and M_2 are universal minimal G-spaces then by universality we have epimorphisms $\phi_1 : M_1 \to M_2$ and $\phi_2 : M_2 \to M_1$. If in addition M_1 is coalescent, then $\phi_2 \circ \phi_1$ must be an isomorphism, and hence ϕ_1 and ϕ_2 are isomorphisms.

• Let $M = X_0$ be universal and minimal. Let $\psi : M \to M$ be a *G*-epimorphism. Fix an ordinal with $|\beta| > |M^2|$.

- Let $M = X_0$ be universal and minimal. Let $\psi : M \to M$ be a *G*-epimorphism. Fix an ordinal with $|\beta| > |M^2|$.
- Construct a tower of extensions of minimal G-spaces {X_α}_{0≤α≤β}, φ_{δ,α} : X_α → X_δ with φ_{δ,α} = φ_{δ,γ} ∘ φ_{γ,α} for α ≥ γ ≥ δ by means of transfinite induction. If α is a successor ordinal, take an epimorphism f_α : M → X_{α-1} using the universality of M and define (G, X_α) = (G, M), φ_{α-1,α} = f_α ∘ φ, and for γ < α − 1, define φ_{γ,α} = φ_{γ,α-1} ∘ φ_{α-1,α}. If α is a limit ordinal, define X_α to be the projective limit of {X_γ}_{0≤γ<α}, and for γ < α, define φ_{γ,α} : X_α → X_γ to be the epimorphism coming from the projective limit.

- Let $M = X_0$ be universal and minimal. Let $\psi : M \to M$ be a *G*-epimorphism. Fix an ordinal with $|\beta| > |M^2|$.
- Construct a tower of extensions of minimal G-spaces {X_α}_{0≤α≤β}, φ_{δ,α} : X_α → X_δ with φ_{δ,α} = φ_{δ,γ} ∘ φ_{γ,α} for α ≥ γ ≥ δ by means of transfinite induction. If α is a successor ordinal, take an epimorphism f_α : M → X_{α-1} using the universality of M and define (G, X_α) = (G, M), φ_{α-1,α} = f_α ∘ φ, and for γ < α − 1, define φ_{γ,α} = φ_{γ,α-1} ∘ φ_{α-1,α}. If α is a limit ordinal, define X_α to be the projective limit of {X_γ}_{0≤γ<α}, and for γ < α, define φ_{γ,α} : X_α → X_γ to be the epimorphism coming from the projective limit.
- Key property: For each ordinal $\gamma < \beta$, there exist distinct $x_{\gamma}, y_{\gamma} \in X_{\gamma+1}$ with $\phi_{\gamma,\gamma+1}(x_{\gamma}) = \phi_{\gamma,\gamma+1}(y_{\gamma}) \triangleq z_{\gamma}$.

By the universality of (G, M) one has an epimorphism M → X_β. This implies |X_β| ≤ |M|.

- By the universality of (G, M) one has an epimorphism M → X_β. This implies |X_β| ≤ |M|.
- Key property: For each ordinal $\gamma < \beta$, there exist distinct $x_{\gamma}, y_{\gamma} \in X_{\gamma+1}$ with $\phi_{\gamma,\gamma+1}(x_{\gamma}) = \phi_{\gamma,\gamma+1}(y_{\gamma}) \triangleq z_{\gamma}$.

- By the universality of (G, M) one has an epimorphism M → X_β. This implies |X_β| ≤ |M|.
- Key property: For each ordinal $\gamma < \beta$, there exist distinct $x_{\gamma}, y_{\gamma} \in X_{\gamma+1}$ with $\phi_{\gamma,\gamma+1}(x_{\gamma}) = \phi_{\gamma,\gamma+1}(y_{\gamma}) \triangleq z_{\gamma}$.
- For each $\gamma < \beta$, since $\phi_{\gamma+1,\beta}$ is surjective, we can find $\tilde{x}_{\gamma}, \tilde{y}_{\gamma} \in X_{\beta}$ with $\phi_{\gamma+1,\beta}(\tilde{x}_{\gamma}) = x_{\gamma}$ and $\phi_{\gamma+1,\beta}(\tilde{y}_{\gamma}) = y_{\gamma}$. For any $\gamma < \alpha < \beta$, one has $\phi_{\gamma+1,\beta}(\tilde{x}_{\alpha}) = \phi_{\gamma+1,\alpha}(z_{\alpha}) = \phi_{\gamma+1,\beta}(\tilde{y}_{\alpha})$, and $\phi_{\gamma+1,\beta}(\tilde{x}_{\gamma}) = x_{\gamma} \neq y_{\gamma} = \phi_{\gamma+1,\beta}(\tilde{y}_{\gamma})$, and hence $(\tilde{x}_{\alpha}, \tilde{y}_{\alpha}) \neq (\tilde{x}_{\gamma}, \tilde{y}_{\gamma})$.

- By the universality of (G, M) one has an epimorphism M → X_β. This implies |X_β| ≤ |M|.
- Key property: For each ordinal $\gamma < \beta$, there exist distinct $x_{\gamma}, y_{\gamma} \in X_{\gamma+1}$ with $\phi_{\gamma,\gamma+1}(x_{\gamma}) = \phi_{\gamma,\gamma+1}(y_{\gamma}) \triangleq z_{\gamma}$.
- For each $\gamma < \beta$, since $\phi_{\gamma+1,\beta}$ is surjective, we can find $\tilde{x}_{\gamma}, \tilde{y}_{\gamma} \in X_{\beta}$ with $\phi_{\gamma+1,\beta}(\tilde{x}_{\gamma}) = x_{\gamma}$ and $\phi_{\gamma+1,\beta}(\tilde{y}_{\gamma}) = y_{\gamma}$. For any $\gamma < \alpha < \beta$, one has $\phi_{\gamma+1,\beta}(\tilde{x}_{\alpha}) = \phi_{\gamma+1,\alpha}(z_{\alpha}) = \phi_{\gamma+1,\beta}(\tilde{y}_{\alpha})$, and $\phi_{\gamma+1,\beta}(\tilde{x}_{\gamma}) = x_{\gamma} \neq y_{\gamma} = \phi_{\gamma+1,\beta}(\tilde{y}_{\gamma})$, and hence $(\tilde{x}_{\alpha}, \tilde{y}_{\alpha}) \neq (\tilde{x}_{\gamma}, \tilde{y}_{\gamma})$.
- This implies that the map $\{\gamma | 0 \leq \gamma < \beta\} \rightarrow X_{\beta} \times X_{\beta}$ given by $\gamma \mapsto (\tilde{x}_{\gamma}, \tilde{y}_{\gamma})$ is injective, which in turn implies that $|\beta| \leq |X_{\beta}^2|$.

- By the universality of (G, M) one has an epimorphism M → X_β. This implies |X_β| ≤ |M|.
- Key property: For each ordinal $\gamma < \beta$, there exist distinct $x_{\gamma}, y_{\gamma} \in X_{\gamma+1}$ with $\phi_{\gamma,\gamma+1}(x_{\gamma}) = \phi_{\gamma,\gamma+1}(y_{\gamma}) \triangleq z_{\gamma}$.
- For each $\gamma < \beta$, since $\phi_{\gamma+1,\beta}$ is surjective, we can find $\tilde{x}_{\gamma}, \tilde{y}_{\gamma} \in X_{\beta}$ with $\phi_{\gamma+1,\beta}(\tilde{x}_{\gamma}) = x_{\gamma}$ and $\phi_{\gamma+1,\beta}(\tilde{y}_{\gamma}) = y_{\gamma}$. For any $\gamma < \alpha < \beta$, one has $\phi_{\gamma+1,\beta}(\tilde{x}_{\alpha}) = \phi_{\gamma+1,\alpha}(z_{\alpha}) = \phi_{\gamma+1,\beta}(\tilde{y}_{\alpha})$, and $\phi_{\gamma+1,\beta}(\tilde{x}_{\gamma}) = x_{\gamma} \neq y_{\gamma} = \phi_{\gamma+1,\beta}(\tilde{y}_{\gamma})$, and hence $(\tilde{x}_{\alpha}, \tilde{y}_{\alpha}) \neq (\tilde{x}_{\gamma}, \tilde{y}_{\gamma})$.
- This implies that the map $\{\gamma | 0 \leq \gamma < \beta\} \rightarrow X_{\beta} \times X_{\beta}$ given by $\gamma \mapsto (\tilde{x}_{\gamma}, \tilde{y}_{\gamma})$ is injective, which in turn implies that $|\beta| \leq |X_{\beta}^2|$.
- Putting all the inequalities together including our initial choice $|\beta| > |M^2|$, we get $|M^2| < |\beta| \le |X_{\beta}^2| \le |M^2|$, which is impossible.

If G is compact then $(G, M_G) = (G, G)$.

Definition

If $M_G = \{\bullet\}$, then we call G extremely amenable.

Note G is extremely amenable iff every G-system has a G-fixed point.

Theorem (Gromov & Milman, 1983)

U(H) the unitary group of the infinite-dimensional separable Hilbert space H with the strong operator topology is extremely amenable.

Theorem (Pestov, 1998)

Let $Homeo_+(S^1)$ be the group of orientation-preserving homeomorphisms of the circle equipped with the compact-open topology.

 $(Homeo_+(S^1), M_{Homeo_+(S^1)}) = (Homeo_+(S^1), S^1).$

If G is compact then $(G, M_G) = (G, G)$.

Definition

If $M_G = \{\bullet\}$, then we call G extremely amenable.

Note G is extremely amenable iff every G-system has a G-fixed point.

Theorem (Gromov & Milman, 1983)

U(*H*) the unitary group of the infinite-dimensional separable Hilbert space *H* with the strong operator topology is **extremely amenable**.

Theorem (Pestov, 1998)

Let $Homeo_+(S^1)$ be the group of orientation-preserving homeomorphisms of the circle equipped with the compact-open topology.

 $(\text{Homeo}_+(S^1), M_{\text{Homeo}_+(S^1)}) = (\text{Homeo}_+(S^1), S^1).$

Yonatan Gutman (IM PAN)

If G is compact then $(G, M_G) = (G, G)$.

Definition

If $M_G = \{\bullet\}$, then we call G extremely amenable.

Note G is extremely amenable iff every G-system has a G-fixed point.

Theorem (Gromov & Milman, 1983)

U(H) the unitary group of the infinite-dimensional separable Hilbert space H with the strong operator topology is extremely amenable.

Theorem (Pestov, 1998)

Let $Homeo_+(S^1)$ be the group of orientation-preserving homeomorphisms of the circle equipped with the compact-open topology.

 $(\text{Homeo}_+(S^1), M_{\text{Homeo}_+(S^1)}) = (\text{Homeo}_+(S^1), S^1).$

Yonatan Gutman (IM PAN)

If G is compact then $(G, M_G) = (G, G)$.

Definition

If $M_G = \{\bullet\}$, then we call G extremely amenable.

Note G is extremely amenable iff every G-system has a G-fixed point.

Theorem (Gromov & Milman, 1983)

U(H) the unitary group of the infinite-dimensional separable Hilbert space H with the strong operator topology is extremely amenable.

Theorem (Pestov, 1998)

Let $Homeo_+(S^1)$ be the group of orientation-preserving homeomorphisms of the circle equipped with the compact-open topology.

$$(\mathsf{Homeo}_+(S^1), M_{\mathsf{Homeo}_+(S^1)}) = (\mathsf{Homeo}_+(S^1), S^1).$$

The revitalization of the universal minimal space theory is due to Vladimr Pestov. He has stated several influential questions in particular in his 2006 AMS University Lecture Series monograph *Dynamics of infinite-dimensional groups: the Ramsey-Dvoretzky-Milman phenomenon.*

Question (Pestov)

Let Q be the Hilbert cube (or a connected manifold of dimension \geq 2). Is it true that

 $(Homeo(Q), M_{Homeo(Q)}) = (Homeo(Q), Q)?$

The revitalization of the universal minimal space theory is due to Vladimr Pestov. He has stated several influential questions in particular in his 2006 AMS University Lecture Series monograph *Dynamics of infinite-dimensional groups: the Ramsey-Dvoretzky-Milman phenomenon.*

Question (Pestov)

Let Q be the Hilbert cube (or a connected manifold of dimension ≥ 2). Is it true that

$$(Homeo(Q), M_{Homeo(Q)}) = (Homeo(Q), Q)?$$

• The hyperspace of X:

 $Exp(X) = \{V \subset X | \emptyset \neq V \text{ is closed}\}$ equipped with the Vietoris topology:

$$\langle U_1, U_2, \ldots, U_n \rangle = \{F \in Exp(X) | F \subset \bigcup_{k=1}^n U_k, F \cap U_k \neq \emptyset, k = 1 \ldots, n\}$$

• The hyperspace of X:

 $Exp(X) = \{V \subset X | \emptyset \neq V \text{ is closed}\}$ equipped with the *Vietoris* topology:

$$\langle U_1, U_2, \ldots U_n \rangle = \{F \in Exp(X) | F \subset \bigcup_{k=1}^n U_k, F \cap U_k \neq \emptyset, k = 1 \ldots, n\}$$

n

• $c \in Exp(Exp(X))$ is a chain: $A, B \in c \Rightarrow A \subset B \lor B \subset A$.

• The hyperspace of X:

 $Exp(X) = \{V \subset X | \emptyset \neq V \text{ is closed}\}$ equipped with the *Vietoris* topology:

$$\langle U_1, U_2, \ldots U_n \rangle = \{F \in Exp(X) | F \subset \bigcup_{k=1}^n U_k, F \cap U_k \neq \emptyset, k = 1 \ldots, n\}$$

n

- $c \in Exp(Exp(X))$ is a chain: $A, B \in c \Rightarrow A \subset B \lor B \subset A$.
- c ∈ Exp(Exp(X)) is a maximal chain if for any chain d, c ⊂ d implies c = d.

• The hyperspace of X:

 $Exp(X) = \{ V \subset X | \emptyset \neq V \text{ is closed} \}$ equipped with the Vietoris topology:

$$\langle U_1, U_2, \ldots U_n \rangle = \{F \in Exp(X) | F \subset \bigcup_{k=1}^n U_k, F \cap U_k \neq \emptyset, k = 1 \ldots, n\}$$

n

- $c \in Exp(Exp(X))$ is a chain: $A, B \in c \Rightarrow A \subset B \lor B \subset A$.
- c ∈ Exp(Exp(X)) is a maximal chain if for any chain d, c ⊂ d implies c = d.
- The space of maximal chains:

 $\Phi(X) = \{c \in Exp(Exp(X)) | c \text{ is a maximal chain} \}$
(G, X) is called 3-transitive if $|X| \ge 3$ and for all distinct $a, b, c \in X$ and distinct $a', b', c' \in X$, there is $g \in G$ so that ga = a', gb = b' and gc = c'.

Theorem (Uspenskij, 2000)

Let G be a topological group, then (G, M_G) is not 3-transitive.

Thus $(\text{Homeo}(Q), M_{\text{Homeo}(Q)}) \neq (\text{Homeo}(Q), Q).$

Theorem (Glasner & Weiss, 2003)

Let Homeo(K) be the homeomorphism group of the Cantor set equipped with the compact-open topology. Then

 $(Homeo(K), M_{Homeo(K)}) = (Homeo(K), \Phi(K)).$

(G, X) is called 3-transitive if $|X| \ge 3$ and for all distinct $a, b, c \in X$ and distinct $a', b', c' \in X$, there is $g \in G$ so that ga = a', gb = b' and gc = c'.

Theorem (Uspenskij, 2000)

Let G be a topological group, then (G, M_G) is not 3-transitive.

Thus $(\text{Homeo}(Q), M_{\text{Homeo}(Q)}) \neq (\text{Homeo}(Q), Q).$

Theorem (Glasner & Weiss, 2003)

Let Homeo(K) be the homeomorphism group of the Cantor set equipped with the compact-open topology. Then

 $(\operatorname{Homeo}(K), M_{\operatorname{Homeo}(K)}) = (\operatorname{Homeo}(K), \Phi(K)).$

(G, X) is called 3-transitive if $|X| \ge 3$ and for all distinct $a, b, c \in X$ and distinct $a', b', c' \in X$, there is $g \in G$ so that ga = a', gb = b' and gc = c'.

Theorem (Uspenskij, 2000)

Let G be a topological group, then (G, M_G) is not 3-transitive.

Thus $(\text{Homeo}(Q), M_{\text{Homeo}(Q)}) \neq (\text{Homeo}(Q), Q).$

Theorem (Glasner & Weiss, 2003)

Let Homeo(K) be the homeomorphism group of the Cantor set equipped with the compact-open topology. Then

 $(\operatorname{Homeo}(K), M_{\operatorname{Homeo}(K)}) = (\operatorname{Homeo}(K), \Phi(K)).$

H-Homogeneous Spaces

A zero-dimensional compact Hausdorff topological space X is called **h-homogeneous** if every non-empty clopen subset of X is homeomorphic to the entire space X.

A zero-dimensional compact Hausdorff topological space X is called **h-homogeneous** if every non-empty clopen subset of X is homeomorphic to the entire space X.

Definition

A Boolean algebra B is called **homogeneous** if for any nonzero element a of B the relative algebra $B|a = \{x \in B : x \le a\}$ is isomorphic to B.

A zero-dimensional compact Hausdorff topological space X is called **h-homogeneous** if every non-empty clopen subset of X is homeomorphic to the entire space X.

Definition

A Boolean algebra B is called **homogeneous** if for any nonzero element a of B the relative algebra $B|a = \{x \in B : x \le a\}$ is isomorphic to B.

Using Stone's Duality Theorem a zero-dimensional compact Hausdorff h-homogeneous space X is the Stone dual of a homogeneous Boolean Algebra, i.e. any such space is realized as the space of ultrafilters B^* over a homogeneous Boolean algebra B equipped with the topology given by the base $N_a = \{U \in B^* : a \in U\}$,

Examples of H-Homogeneous Spaces

 The countable atomless Boolean algebra is homogeneous. It corresponds by Stone duality to the Cantor space K = {0,1}^N.

- The countable atomless Boolean algebra is homogeneous. It corresponds by Stone duality to the Cantor space K = {0,1}^N.
- Every infinite free Boolean algebra is homogeneous. These Boolean algebras correspond by Stone duality to the generalized Cantor spaces, {0,1}^κ, for infinite cardinals κ

- The countable atomless Boolean algebra is homogeneous. It corresponds by Stone duality to the Cantor space K = {0,1}^ℕ.
- Every infinite free Boolean algebra is homogeneous. These Boolean algebras correspond by Stone duality to the generalized Cantor spaces, {0,1}^κ, for infinite cardinals κ
- Let P(ω) be the Boolean algebra of all subsets of ω (the first infinite cardinal) and let fin ⊂ P(ω) be the ideal comprising the finite subsets of ω. Define the equivalence relations A ~_{fin} B, A, B ∈ P(ω), if and only if A△B is in fin. The quotient Boolean algebra P(ω)/fin is homogeneous. This Boolean algebra corresponds by Stone duality to the corona ω* = βω \ ω, where βω denotes the Stone-Čech compactification of ω.

The Universal Minimal Space of Homeomorphism Groups of H-Homogeneous Spaces

The Universal Minimal Space of Homeomorphism Groups of H-Homogeneous Spaces

Theorem (Glasner & G.)

Let X be a h-homogeneous zero-dimensional compact Hausdorff topological space. Let G = Homeo(X) equipped with the compact-open topology, then $U_G = \Phi(X)$, the space of maximal chains on X.

The Universal Minimal Space of Homeomorphism Groups of H-Homogeneous Spaces

Theorem (Glasner & G.)

Let X be a h-homogeneous zero-dimensional compact Hausdorff topological space. Let G = Homeo(X) equipped with the compact-open topology, then $U_G = \Phi(X)$, the space of maximal chains on X.

Corollary: $U_{Homeo(\omega^*)} = \Phi(\omega^*)!$

A maximal chain $c \in \Phi(X)$ is connected iff c is connected as a compact subspace of Exp(X), equivalently, each member of c is connected.

Denote by $\Phi_c(X)$ the space of connected maximal chains.

Theorem (Gutman, 2008)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Then (Homeo(Q), $\Phi_c(Q)$) is minimal.

Question (Pestov)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Does it hold

 $(Homeo(Q), M_{Homeo(Q)})) = (Homeo(Q), \Phi_c(Q))?$

Pestov: "Probably yes!"

A maximal chain $c \in \Phi(X)$ is connected iff c is connected as a compact subspace of Exp(X), equivalently, each member of c is connected.

Denote by $\Phi_c(X)$ the space of connected maximal chains.

Theorem (Gutman, 2008)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Then (Homeo(Q), $\Phi_c(Q)$) is minimal.

Question (Pestov)

Let Q be the Hilbert cube or a connected manifold of dimension \geq 2. Does it hold

 $(Homeo(Q), M_{Homeo(Q)})) = (Homeo(Q), \Phi_c(Q))?$

Pestov: "Probably yes!"

A maximal chain $c \in \Phi(X)$ is connected iff c is connected as a compact subspace of Exp(X), equivalently, each member of c is connected.

Denote by $\Phi_c(X)$ the space of connected maximal chains.

Theorem (Gutman, 2008)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Then $(Homeo(Q), \Phi_c(Q))$ is minimal.

Question (Pestov)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Does it hold

 $(Homeo(Q), M_{Homeo(Q)})) = (Homeo(Q), \Phi_c(Q))?$

Pestov: "Probably yes!"

A maximal chain $c \in \Phi(X)$ is connected iff c is connected as a compact subspace of Exp(X), equivalently, each member of c is connected.

Denote by $\Phi_c(X)$ the space of connected maximal chains.

Theorem (Gutman, 2008)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Then $(Homeo(Q), \Phi_c(Q))$ is minimal.

Question (Pestov)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Does it hold

$$(Homeo(Q), M_{Homeo(Q)})) = (Homeo(Q), \Phi_c(Q))?$$

Pestov: "Probably yes!"

A maximal chain $c \in \Phi(X)$ is connected iff c is connected as a compact subspace of Exp(X), equivalently, each member of c is connected.

Denote by $\Phi_c(X)$ the space of connected maximal chains.

Theorem (Gutman, 2008)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Then $(Homeo(Q), \Phi_c(Q))$ is minimal.

Question (Pestov)

Let Q be the Hilbert cube or a connected manifold of dimension ≥ 2 . Does it hold

$$(Homeo(Q), M_{Homeo(Q)})) = (Homeo(Q), \Phi_c(Q))?$$

Pestov: "Probably yes!"

UMS of Homeo(high-dimensional manifold) is not metrizable

Definition

Let X be compact and $U \subset X$ open. Denote by G_U the rigid stabilizer of U, i.e., the subgroup of all elements of G that fix all points in $X \setminus U$. A subgroup $G \leq \text{Homeo}(X)$ is called locally transitive if for every open $U \subset X$ and every $x \in U$, $G_U x$ contains a neighborhood of x.

Example

Let X be the Hilbert cube or a closed manifold of dimension 2 or higher. Then any group containing one of the following groups is locally transitive: $Homeo_0(X)$, $Homeo_+(X)$ (for X orientable), $Diffeo_0(X)$ (for X smooth).

Theorem (G, Tsankov & Zucker, 2021)

Let X be a closed manifold of dimension at least 2 or the Hilbert cube and let G be a locally transitive subgroup of Homeo(X). Then the universal minimal flow of G is not metrizable.

UMS of Homeo(high-dimensional manifold) is not metrizable

Definition

Let X be compact and $U \subset X$ open. Denote by G_U the rigid stabilizer of U, i.e., the subgroup of all elements of G that fix all points in $X \setminus U$. A subgroup $G \leq \text{Homeo}(X)$ is called locally transitive if for every open $U \subset X$ and every $x \in U$, $G_U x$ contains a neighborhood of x.

Example

Let X be the Hilbert cube or a closed manifold of dimension 2 or higher. Then any group containing one of the following groups is locally transitive: $Homeo_0(X)$, $Homeo_+(X)$ (for X orientable), $Diffeo_0(X)$ (for X smooth).

Theorem (G, Tsankov & Zucker, 2021)

Let X be a closed manifold of dimension at least 2 or the Hilbert cube and let G be a locally transitive subgroup of Homeo(X). Then the universal minimal flow of G is not metrizable.

UMS of Homeo(high-dimensional manifold) is not metrizable

Definition

Let X be compact and $U \subset X$ open. Denote by G_U the rigid stabilizer of U, i.e., the subgroup of all elements of G that fix all points in $X \setminus U$. A subgroup $G \leq \text{Homeo}(X)$ is called locally transitive if for every open $U \subset X$ and every $x \in U$, $G_U x$ contains a neighborhood of x.

Example

Let X be the Hilbert cube or a closed manifold of dimension 2 or higher. Then any group containing one of the following groups is locally transitive: $Homeo_0(X)$, $Homeo_+(X)$ (for X orientable), $Diffeo_0(X)$ (for X smooth).

Theorem (G, Tsankov & Zucker, 2021)

Let X be a closed manifold of dimension at least 2 or the Hilbert cube and let G be a locally transitive subgroup of Homeo(X). Then the universal minimal flow of G is not metrizable.

We concentrate on the case of closed manifold of dimension at least 3 or the Hilbert cube.

Theorem (Ben Yaacov, Melleray, Tsankov, 2017)

Let G be a Polish group. If M_G is metrizable then it has a comeagre orbit

Theorem (Angel, Kechris & Lyons, 2014)

Let G be a Polish group. Supposet (G, X) is minimal and $\phi : (G, X) \rightarrow (G, Y)$ is a factor map. If the orbit Gx_0 is comeagre then the orbit $G\phi(x_0)$ is comeagre.

Theorem (G, Tsankov & Zucker, 2021)

We concentrate on the case of closed manifold of dimension at least 3 or the Hilbert cube.

Theorem (Ben Yaacov, Melleray, Tsankov, 2017)

Let G be a Polish group. If M_G is metrizable then it has a comeagre orbit

Theorem (Angel, Kechris & Lyons, 2014)

Let G be a Polish group. Supposet (G, X) is minimal and $\phi : (G, X) \rightarrow (G, Y)$ is a factor map. If the orbit Gx_0 is comeagre then the orbit $G\phi(x_0)$ is comeagre.

Theorem (G, Tsankov & Zucker, 2021)

We concentrate on the case of closed manifold of dimension at least 3 or the Hilbert cube.

Theorem (Ben Yaacov, Melleray, Tsankov, 2017)

Let G be a Polish group. If M_G is metrizable then it has a comeagre orbit.

Theorem (Angel, Kechris & Lyons, 2014)

Let G be a Polish group. Supposet (G, X) is minimal and $\phi : (G, X) \rightarrow (G, Y)$ is a factor map. If the orbit Gx_0 is comeagre then the orbit $G\phi(x_0)$ is comeagre.

Theorem (G, Tsankov & Zucker, 2021)

We concentrate on the case of closed manifold of dimension at least 3 or the Hilbert cube.

Theorem (Ben Yaacov, Melleray, Tsankov, 2017)

Let G be a Polish group. If M_G is metrizable then it has a comeagre orbit.

Theorem (Angel, Kechris & Lyons, 2014)

Let G be a Polish group. Supposet (G, X) is minimal and $\phi : (G, X) \rightarrow (G, Y)$ is a factor map. If the orbit Gx_0 is comeagre then the orbit $G\phi(x_0)$ is comeagre.

Theorem (G, Tsankov & Zucker, 2021)

We concentrate on the case of closed manifold of dimension at least 3 or the Hilbert cube.

Theorem (Ben Yaacov, Melleray, Tsankov, 2017)

Let G be a Polish group. If M_G is metrizable then it has a comeagre orbit.

Theorem (Angel, Kechris & Lyons, 2014)

Let G be a Polish group. Supposet (G, X) is minimal and $\phi : (G, X) \rightarrow (G, Y)$ is a factor map. If the orbit Gx_0 is comeagre then the orbit $G\phi(x_0)$ is comeagre.

Theorem (G, Tsankov & Zucker, 2021)

Let G be a Polish group. By the Birkhoff-Kakutani theorem it admits a right-invariant metric d. Denote:

$$G_{\varepsilon} = \{g \in G : d(g, 1_G) < \varepsilon\}.$$

Theorem (Rosendal)

Let G be a Polish group, and suppose Y is a Polish, topologically transitive G-space. Then the following are equivalent:

All orbits in Y are meagre;

2 There is ε > 0 and a non-empty open U ⊆ Y such that for any non-empty open V ⊆ U, there are non-empty open W₀, W₁ ⊆ V such that (G_εW₀) ∩ W₁ = Ø.

Let G be a Polish group. By the Birkhoff-Kakutani theorem it admits a right-invariant metric d. Denote:

$$G_{\varepsilon} = \{g \in G : d(g, 1_G) < \varepsilon\}.$$

Theorem (Rosendal)

Let G be a Polish group, and suppose Y is a Polish, topologically transitive G-space. Then the following are equivalent:

- All orbits in Y are meagre;
- 2 There is ε > 0 and a non-empty open U ⊆ Y such that for any non-empty open V ⊆ U, there are non-empty open W₀, W₁ ⊆ V such that (G_εW₀) ∩ W₁ = Ø.

A continuum is a compact, connected space. An open cover U_0, \ldots, U_{n-1} of a continuum is called a chain cover if for all i, j < n,

$$U_i \cap U_j \neq \emptyset \iff |i-j| \leq 1.$$

A continuum is chainable if every open cover admits a refinement that is a chain cover. A continuum is indecomposable if it is not the union of two proper subcontinua. It is hereditarily indecomposable if every subcontinuum is indecomposable.

Theorem (Bing, 1951)

There is a unique, up to homeomorphism, non-degenerate (having more than one point), chainable, hereditarily indecomposable continuum.

This space is referred to as the pseudoarc P.

A continuum is a compact, connected space. An open cover U_0, \ldots, U_{n-1} of a continuum is called a chain cover if for all i, j < n,

$$U_i \cap U_j \neq \emptyset \iff |i-j| \leq 1.$$

A continuum is chainable if every open cover admits a refinement that is a chain cover. A continuum is indecomposable if it is not the union of two proper subcontinua. It is hereditarily indecomposable if every subcontinuum is indecomposable.

Theorem (Bing, 1951)

There is a unique, up to homeomorphism, non-degenerate (having more than one point), chainable, hereditarily indecomposable continuum.

This space is referred to as the pseudoarc P.

A continuum is a compact, connected space. An open cover U_0, \ldots, U_{n-1} of a continuum is called a chain cover if for all i, j < n,

$$U_i \cap U_j \neq \emptyset \iff |i-j| \leq 1.$$

A continuum is chainable if every open cover admits a refinement that is a chain cover. A continuum is indecomposable if it is not the union of two proper subcontinua. It is hereditarily indecomposable if every subcontinuum is indecomposable.

Theorem (Bing, 1951)

There is a unique, up to homeomorphism, non-degenerate (having more than one point), chainable, hereditarily indecomposable continuum.

This space is referred to as the pseudoarc P.

Proposition

Let P be the pseudoarc. It holds $\Phi_c(P) = P$.

Proof.

Let $c_1, c_2 \in \Phi_c(P)$. Assume $r(c_1) = r(c_2) := r$. We claim $c_1 = c_2$. Indeed let $C_1 \in c_1$ and $C_2 \in c_2$. As $r \in C_1 \cap C_2$ then $C_1 \cup C_2$ is a continuum. By its indecomposability either $C_1 \subset C_2$ or vice versa.

Question (Uspenskij, 2000)

Proposition

Let P be the pseudoarc. It holds $\Phi_c(P) = P$.

Proof.

Let $c_1, c_2 \in \Phi_c(P)$. Assume $r(c_1) = r(c_2) := r$. We claim $c_1 = c_2$. Indeed let $C_1 \in c_1$ and $C_2 \in c_2$. As $r \in C_1 \cap C_2$ then $C_1 \cup C_2$ is a continuum. By its indecomposability either $C_1 \subset C_2$ or vice versa.

Question (Uspenskij, 2000)

Proposition

Let P be the pseudoarc. It holds $\Phi_c(P) = P$.

Proof.

Let $c_1, c_2 \in \Phi_c(P)$. Assume $r(c_1) = r(c_2) := r$. We claim $c_1 = c_2$. Indeed let $C_1 \in c_1$ and $C_2 \in c_2$. As $r \in C_1 \cap C_2$ then $C_1 \cup C_2$ is a continuum. By its indecomposability either $C_1 \subset C_2$ or vice versa.

Question (Uspenskij, 2000)

Proposition

Let P be the pseudoarc. It holds $\Phi_c(P) = P$.

Proof.

Let $c_1, c_2 \in \Phi_c(P)$. Assume $r(c_1) = r(c_2) := r$. We claim $c_1 = c_2$. Indeed let $C_1 \in c_1$ and $C_2 \in c_2$. As $r \in C_1 \cap C_2$ then $C_1 \cup C_2$ is a continuum. By its indecomposability either $C_1 \subset C_2$ or vice versa.

Question (Uspenskij, 2000)
Let X be a compact space. Note that given a maximal chain $c \in \Phi_c(X)$, it has a minimal element, referred to as its root, r(c), which is a singleton.

Proposition

Let P be the pseudoarc. It holds $\Phi_c(P) = P$.

Proof.

Let $c_1, c_2 \in \Phi_c(P)$. Assume $r(c_1) = r(c_2) := r$. We claim $c_1 = c_2$. Indeed let $C_1 \in c_1$ and $C_2 \in c_2$. As $r \in C_1 \cap C_2$ then $C_1 \cup C_2$ is a continuum. By its indecomposability either $C_1 \subset C_2$ or vice versa.

Question (Uspenskij, 2000)

Does it hold $(Homeo(P), M_{Homeo(P)}) = (Homeo(P), P)?$

Let X be a compact space. Note that given a maximal chain $c \in \Phi_c(X)$, it has a minimal element, referred to as its root, r(c), which is a singleton.

Proposition

Let P be the pseudoarc. It holds $\Phi_c(P) = P$.

Proof.

Let $c_1, c_2 \in \Phi_c(P)$. Assume $r(c_1) = r(c_2) := r$. We claim $c_1 = c_2$. Indeed let $C_1 \in c_1$ and $C_2 \in c_2$. As $r \in C_1 \cap C_2$ then $C_1 \cup C_2$ is a continuum. By its indecomposability either $C_1 \subset C_2$ or vice versa.

Question (Uspenskij, 2000)

Does it hold $(Homeo(P), M_{Homeo(P)}) = (Homeo(P), P)?$