Generics in invariant subsets of automorphisms of homogeneous structures

Aleksander Ivanov, Monika Drzewiecka and Bartosz Mokry

Department of Applied Mathematics Silesian Universyty of Technology

October 24, 2023

• • = • • = •

The circular ordering with irrational rotation number Other cases	
Results Rationals	
Objects	
WAP and CAP	

Let M be countable ultrahomogeneous. Aut(M) = Polish group (pointwise convergence topology).

Standard Question: When does the space Aut(M) contain a conjugacy class which is **comeagre** in Aut(M) ? (contains the intersection of a countable family of dense open subsets)

A standard question	
Objects Results Rationals The circular ordering with irrational rotation number	
WAP and CAP	

Let M be countable ultrahomogeneous. Aut(M) = Polish group (pointwise convergence topology).

Standard Question: When does the space Aut(M) contain a conjugacy class which is **comeagre** in Aut(M)? (contains the intersection of a countable family of dense open subsets)

WAP and CAP	
Objects	
Results	
Rationals	
The circular ordering with irrational rotation number	
Other cases	
Setup	

Let
$$\rho \in \operatorname{Aut}(M)$$
, $\rho^{\operatorname{Aut}(M)} = \operatorname{conjugacy class of } \rho$.
Let $C_{\rho} = cl(\rho^{\operatorname{Aut}(M)})$, where cl = topological closure in Aut(M).

Question: When does the space C_{ρ} contain a conjugacy class of Aut(M) which is comeagre in C_{ρ} ?

For $\mathcal{C} \subseteq_{cl} \operatorname{Aut}(M)$, γ is generic in \mathcal{C} if $\gamma^{\operatorname{Aut}(M)}$ is comeagre in \mathcal{C} .

Description of all closed subsets $C \subseteq Aut(M)$ which are invariant under conjugacy in Aut(M) and have generics.

WAP and CAP	
Objects	
Results	
Rationals	
The circular ordering with irrational rotation number	
Other cases	
Setup	

Let
$$\rho \in \operatorname{Aut}(M)$$
, $\rho^{\operatorname{Aut}(M)} = \operatorname{conjugacy class of } \rho$.
Let $C_{\rho} = cl(\rho^{\operatorname{Aut}(M)})$, where cl = topological closure in Aut(M).

Question: When does the space C_{ρ} contain a conjugacy class of Aut(M) which is comeagre in C_{ρ} ?

For $\mathcal{C} \subseteq_{cl} \operatorname{Aut}(M)$, γ is **generic** in \mathcal{C} if $\gamma^{\operatorname{Aut}(M)}$ is comeagre in \mathcal{C} .

Description of all closed subsets $C \subseteq Aut(M)$ which are invariant under conjugacy in Aut(M) and have generics.

通 ト イ ヨ ト イ ヨ ト

WAP and CAP	
Objects	
Results	
Rationals	
The circular ordering with irrational rotation number	
Other cases	
Setup	

Let
$$\rho \in \operatorname{Aut}(M)$$
, $\rho^{\operatorname{Aut}(M)} = \operatorname{conjugacy class of } \rho$.
Let $C_{\rho} = cl(\rho^{\operatorname{Aut}(M)})$, where cl = topological closure in Aut(M).

Question: When does the space C_{ρ} contain a conjugacy class of Aut(M) which is comeagre in C_{ρ} ?

For $\mathcal{C} \subseteq_{cl} \operatorname{Aut}(M)$, γ is generic in \mathcal{C} if $\gamma^{\operatorname{Aut}(M)}$ is comeagre in \mathcal{C} .

Description of all closed subsets $C \subseteq Aut(M)$ which are invariant under conjugacy in Aut(M) and have generics.

Let \mathcal{P} be the set of all finite partial isomorphisms of M. The set \mathcal{P} is ordered by the relation of extension of maps: \subseteq . Let $\mathcal{P}' \subset \mathcal{P}$ be invariant under the natural action of $\operatorname{Aut}(M)$ on \mathcal{P} .

 \mathcal{P}' has the **joint embedding property** if for any $p_1, p_2 \in \mathcal{P}'$ there is $p_3 \in \mathcal{P}'$ and $\alpha \in Aut(M)$ such that $p_1 \subseteq p_3$ and $\alpha(p_2) \subseteq p_3$.

 $\mathcal{P}' \subseteq \mathcal{P}$ has the **amalgamation property** if

$$orall p_0, p_1, p_2 \in \mathcal{P}'$$
 ($p_0 \subseteq p_1 \land p_0 \subseteq p_2
ightarrow \exists p_3 \in \mathcal{P}'$

 $\exists \alpha \in \operatorname{Aut}(M / \operatorname{Dom}(p_0) \cup \operatorname{Rng}(p_0)) (p_1 \subseteq p_3 \land \alpha(p_2) \subseteq p_3).$

イロト イポト イラト イラト

WAP and CAP	
Objects	
Results	
Rationals	
The circular ordering with irrational rotation number	
Other cases	
CAD	

• $\mathcal{P}' \subseteq \mathcal{P}$ has the cofinal amalgamation property if for any $p_0 \in \mathcal{P}'$ there is an extension $p'_0 \in \mathcal{P}'$ such that

$$\forall p_1, p_2 \in \mathcal{P}'(p_0' \subseteq p_1 \land p_0' \subseteq p_2 \rightarrow \exists p_3 \in \mathcal{P}'$$

 $\exists \alpha \in \operatorname{Aut}(M/\operatorname{Dom}(p'_0) \cup \operatorname{Rng}(p'_0)) \ (p_1 \subseteq p_3 \land \alpha(p_2) \subseteq p_3)).$

WAP and CAP	
Objects	
Results	
Rationals	
The circular ordering with irrational rotation number	
Other cases	
WAP	

• $\mathcal{P}' \subseteq \mathcal{P}$ has the **weak amalgamation property** if for any $p_0 \in \mathcal{P}'$ there is an extension $p'_0 \in \mathcal{P}'$ such that

$$\forall p_1, p_2 \in \mathcal{P}'(p_0' \subseteq p_1 \land p_0' \subseteq p_2 \rightarrow \exists p_3 \in \mathcal{P}'$$

 $\exists \alpha \in \operatorname{Aut}(M/\operatorname{Dom}(p_0) \cup \operatorname{Rng}(p_0)) \ (p_1 \subseteq p_3 \land \alpha(p_2) \subseteq p_3)).$

Existence of generics. Open Question

 $\mathcal{C}_{\rho} = cl(\rho^{\operatorname{Aut}(M)})$

 $\mathcal{P}_{\rho} = \{ p \in \mathcal{P} : p \text{ extends to an automorphism from } \mathcal{C}_{\rho} \}.$

Fact. The set C_{ρ} has a generic automorphism if and only if the family \mathcal{P}_{ρ} has WAP.

 $\mathsf{AP} \Rightarrow \mathsf{CAP} \Rightarrow \mathsf{WAP}$

Can WAP be replaced by CAP in this formulation?

くロ と く 同 と く ヨ と 一

Existence of generics. Open Question

 $\mathcal{C}_{\rho} = cl(\rho^{\operatorname{Aut}(M)})$

 $\mathcal{P}_{\rho} = \{ p \in \mathcal{P} : p \text{ extends to an automorphism from } \mathcal{C}_{\rho} \}.$

Fact. The set C_{ρ} has a generic automorphism if and only if the family \mathcal{P}_{ρ} has WAP.

 $\mathsf{AP} \Rightarrow \mathsf{CAP} \Rightarrow \mathsf{WAP}$

Can WAP be replaced by CAP in this formulation?

イロト イポト イラト イラト

Another open question

Is it true that when Aut(M) has a generic automorphism then the family \mathcal{P} has CAP?

In this case there is $\rho \in \operatorname{Aut}(M)$ such that $\mathcal{C}_{\rho} = \operatorname{Aut}(M)$, $\mathcal{P}_{\rho} = \mathcal{P}$ and $\mathcal{P} \models WAP \land JEP^{-1}$. Arrive at the equivalen question:

Is it true that $\mathcal{P} \models WAP \land JEP$ *implies* $\mathcal{P} \models CAP$?

It is known that there are M such that \mathcal{P} has JEP $\land \neg$ WAP.

¹ when $C \subseteq_{closed} Aut(M)$ and $\mathcal{P}_{C} = \{p \in \mathcal{P} : p \text{ extends to some } \alpha \in C\}$ then JEP is equivalent to the property that C has a dense conjugacy class.

Another open question

Is it true that when Aut(M) has a generic automorphism then the family \mathcal{P} has CAP?

In this case there is $\rho \in \operatorname{Aut}(M)$ such that $\mathcal{C}_{\rho} = \operatorname{Aut}(M)$, $\mathcal{P}_{\rho} = \mathcal{P}$ and $\mathcal{P} \models WAP \land JEP^{-1}$. Arrive at the equivalen question:

Is it true that $\mathcal{P} \models WAP \land JEP$ *implies* $\mathcal{P} \models CAP$ *?*

It is known that there are M such that \mathcal{P} has JEP $\wedge \neg$ WAP.

¹ when $C \subseteq_{closed} Aut(M)$ and $\mathcal{P}_{C} = \{p \in \mathcal{P} : p \text{ extends to some } \alpha \in C\}$ then JEP is equivalent to the property that C has a dense conjugacy class.

[Pabion + KKKP] : M.Pouzet's example. Structure (\mathbb{Q}, R) , where $R(x, y, z) \Leftrightarrow x < y \land x < z \land y \neq z$.

- < and R are interdefinable and $Aut(\mathbb{Q}, <) = Aut(\mathbb{Q}, R)$;
- for any ρ the set C_{ρ} has a generic automorphism (see below);
- (Q, R) is weakly homogeneous but not cofinitely homogeneous (i.e. not ultahomogeneous) [KKKP].

Viewing \mathbb{Q} as $\mathbb{Q} \cup \mathbb{Q}$ let $\rho \in \operatorname{Aut}(\mathbb{Q}, <)$ be defined by $\rho(x) = x + 1$ on the first copy of $(\mathbb{Q}, <)$ and be the identity on the second copy. Then any $\rho \in \mathcal{P}_{\rho}$ having two fixed points does not have an extension to an amalgamation base.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Countable ultrahomogeneous p.o.sets

Countable ultrahomogeneous partially ordered sets:

Let $1 \le n \le \omega$ and let $[n] = \{m \in \omega | m \le n\}$ (is viewed as an antichain). Let $B_n = [n] \times \mathbb{Q}$ (an ultrahomogeneous p.o.set w.r. to $(a,q) < (b,q') \Leftrightarrow a = b \land q < q').$

Let $C_n = B_n$ but the ordering is defined by

 $(a,q) < (b,q') \Leftrightarrow q < q'.$

Schmerl: Any countable ultrahomogeneous p.o.set is isomorphic to [n], B_n , C_n , $1 \le n \le \omega$, or to the countable universal ultrahomogeneous p.o.set D.

Countable ultrahomogeneous p.o.sets

Countable ultrahomogeneous partially ordered sets:

Let $1 \le n \le \omega$ and let $[n] = \{m \in \omega | m \le n\}$ (is viewed as an antichain). Let $B_n = [n] \times \mathbb{Q}$ (an ultrahomogeneous p.o.set w.r. to $(a,q) < (b,q') \Leftrightarrow a = b \land q < q').$

Let $C_n = B_n$ but the ordering is defined by

 $(a,q) < (b,q') \Leftrightarrow q < q'.$

Schmerl: Any countable ultrahomogeneous p.o.set is isomorphic to [n], B_n , C_n , $1 \le n \le \omega$, or to the countable universal ultrahomogeneous p.o.set D.

Countable ultrahomogeneous p.o.sets

Countable ultrahomogeneous partially ordered sets:

Let $1 \le n \le \omega$ and let $[n] = \{m \in \omega | m \le n\}$ (is viewed as an antichain). Let $B_n = [n] \times \mathbb{Q}$ (an ultrahomogeneous p.o.set w.r. to $(a,q) < (b,q') \Leftrightarrow a = b \land q < q').$

Let $C_n = B_n$ but the ordering is defined by

 $(a,q) < (b,q') \Leftrightarrow q < q'.$

Schmerl: Any countable ultrahomogeneous p.o.set is isomorphic to [n], B_n , C_n , $1 \le n \le \omega$, or to the countable universal ultrahomogeneous p.o.set D.

Highly homogeneous structures

A group $G \leq Sym(\omega)$ is **highly homogeneous** if for any pair of fnte A and $B \subset \omega$ of the same size thre is $g \in G$ taking A onto B. A countable structure M is called highly homogeneous if Aut(M)is highly homogeneous.

The ordering of the rationals $(\mathbb{Q}, <)$ and the structures (\mathbb{Q}, B) , (\mathbb{Q}, Cr) and (\mathbb{Q}, S) are highly homogeneous, where the **linear betweenness relation** associated with $(\mathbb{Q}, <)$:

$$B(x; y, z) \Leftrightarrow (y < x < z) \lor (z < x < y),$$

the **circular order** on the rationals \mathbb{Q} is defined by

 $Cr(x, y, z) \Leftrightarrow (x < y < z) \lor (z < x < y) \lor (y < z < x).$

Highly homogeneous structures

A group $G \leq Sym(\omega)$ is **highly homogeneous** if for any pair of fnte A and $B \subset \omega$ of the same size thre is $g \in G$ taking A onto B. A countable structure M is called highly homogeneous if Aut(M)is highly homogeneous.

The ordering of the rationals $(\mathbb{Q}, <)$ and the structures (\mathbb{Q}, B) , (\mathbb{Q}, Cr) and (\mathbb{Q}, S) are highly homogeneous, where the **linear** betweenness relation associated with $(\mathbb{Q}, <)$:

$$B(x; y, z) \Leftrightarrow (y < x < z) \lor (z < x < y),$$

the circular order on the rationals \mathbb{Q} is defined by

 $Cr(x, y, z) \Leftrightarrow (x < y < z) \lor (z < x < y) \lor (y < z < x).$

The quaternary **separation relation** S on \mathbb{Q} is induced by the permutations of \mathbb{Q} which preserve or reverse C as A as A as A as A as A.

Highly homogeneous structures

A group $G \leq Sym(\omega)$ is **highly homogeneous** if for any pair of fnte A and $B \subset \omega$ of the same size thre is $g \in G$ taking A onto B. A countable structure M is called highly homogeneous if Aut(M)is highly homogeneous.

The ordering of the rationals $(\mathbb{Q}, <)$ and the structures (\mathbb{Q}, B) , (\mathbb{Q}, Cr) and (\mathbb{Q}, S) are highly homogeneous, where the **linear** betweenness relation associated with $(\mathbb{Q}, <)$:

$$B(x; y, z) \Leftrightarrow (y < x < z) \lor (z < x < y),$$

the circular order on the rationals \mathbb{Q} is defined by

$$Cr(x, y, z) \Leftrightarrow (x < y < z) \lor (z < x < y) \lor (y < z < x).$$

The quaternary **separation relation** S on \mathbb{Q} is induced by the permutations of \mathbb{Q} which preserve or reverse $Cr_{...} < cr_{...} < c$

Aleksander Iwanow

Generics in invariant subsets of automorphisms of homogeneous s

Cameron: These examples together with S_{∞} are the only countable highly homogeneous structures.

They are ultrahomogeneous with respect to their natural languages.

伺 ト イヨト イヨト

Let M be a countable highly homogeneous structure or an ultrahomogeneous partially ordered set and let $\rho \in \operatorname{Aut}(M)$ and $\mathcal{C}_{\rho} = cl(\rho^{\operatorname{Aut}(M)})$, $\mathcal{P}_{\rho} = \{p \in \mathcal{P} : p \text{ extends to an automorphism from } \mathcal{C}_{\rho}\}.$

Early conjecture:

 C_{ρ} has a generic element. \mathcal{P}_{ρ} satisfies CAP.

In particular $CAP \Leftrightarrow WAP$.

Comment: Still a conjecture for highly homogeneous structures. The equivalence $CAP \Leftrightarrow WAP$ is still a conjecture.

WAP and CAP	
Objects	
Results	
Rationals	
The circular ordering with irrational rotation number	
Other cases	
Pequite	
Results	

The conjecture holds in the following cases. I. The case of highly homogeneous structures: $M = \omega$, $M = (\mathbb{Q}, <)$, $M = (\mathbb{Q}, B)$, $M = (\mathbb{Q}, S)$ or $M = (\mathbb{Q}, Cr)$ and $\rho \in \operatorname{Aut}(M)$ does not have periodic points.

II. The case of countable ultrahomogeneous partially ordered sets.

$$M = [\omega]$$
, $M = B_n$ with $n \in \omega \cup \{\omega\}$ or $M = C_n$ with $n \in \omega$.

Remaining cases	
WAF and CAF Objects Results Rationals The circular ordering with irrational rotation number Other cases	
WAP and CAP	

The cases M = D, or $M = (\mathbb{Q}, Cr)$ and $\rho \in Aut(M)$ has periodic points, are completely open.

In the case $M = C_{\omega}$ there is $\rho \in Aut(M)$ without generics in C_{ρ} .

The equivalence $CAP \Leftrightarrow WAP$ is still a conjecture.

KKKP-Pabion-Pouzet's example

Structure (\mathbb{Q}, R) , where $R(x, y, z) \Leftrightarrow x < y \land x < z \land y \neq z$. **Corollary.** If there is no cofinal segment of \mathbb{Q} which is fixed by ρ pointwise, then \mathcal{P}_{ρ} has CAP.

伺 ト イヨト イヨト

$$\begin{array}{c} & \text{WAP and CAP} \\ & \text{Objects} \\ & \text{Results} \\ & \text{Rationals} \\ & \text{The circular ordering with irrational rotation number} \\ & \text{Other cases} \\ \end{array}$$

Let $\gamma \in Aut(\mathbb{Q}, <)$ and $a \in \mathbb{Q}$. The **orbital** of γ containing a:

$$\{q \in \mathbb{Q} \,|\, (\exists m, n \in \mathbb{Z})(\gamma^n(a) \leq q \leq \gamma^m(a))\}$$

(a singleton or an open interval).

The parity function $\wp_{\gamma} : \mathbb{Q} \to \{+, -, 0, \}$ of γ is defined as follows:

$$\varphi_{\gamma}(x) = \left\{ egin{array}{ccc} -& ext{if} & \gamma(x) < x \\ 0 & ext{if} & \gamma(x) = x \\ +& ext{if} & \gamma(x) > x. \end{array}
ight.$$

The parity of an orbital *O* is $\wp_{\gamma}(a)$ with $a \in O$.

WAP and CAP Objects Results Rationals

The circular ordering with irrational rotation number Other cases

Conjugacy classes of the group of order-preserving permutations of $\mathbb Q$

Let $(\mathcal{O}_{\gamma}, \preceq_{\gamma})$ be the ordering of γ -orbitals. It is colored by \wp .

A classical result of Schreier and Ulam (according to Holland) says that

 γ_1, γ_2 are conjugate in Aut($\mathbb{Q}, <$) if and only if ($\mathcal{O}_{\gamma_1}, \preceq_{\gamma_1}$) and ($\mathcal{O}_{\gamma_2}, \preceq_{\gamma_2}$) are isomorphic by an isomorphism preserving parity of the orbitals.

< 同 > < 国 > < 国 >

WAP and CAP Objects Results Rationals

The circular ordering with irrational rotation number Other cases

Conjugacy classes of the group of order-preserving permutations of $\mathbb Q$

Let $(\mathcal{O}_{\gamma}, \preceq_{\gamma})$ be the ordering of γ -orbitals. It is colored by \wp .

A classical result of Schreier and Ulam (according to Holland) says that

 γ_1, γ_2 are conjugate in Aut($\mathbb{Q}, <$) if and only if ($\mathcal{O}_{\gamma_1}, \preceq_{\gamma_1}$) and ($\mathcal{O}_{\gamma_2}, \preceq_{\gamma_2}$) are isomorphic by an isomorphism preserving parity of the orbitals.

・ 同 ト ・ ヨ ト ・ ヨ ト

Colored orders

Let $\Delta = \{+, -, 0\}$. Δ -**Colored ordering** = a linear ordering (L, \leq) together with a function $\kappa : L \rightarrow \Delta$.

Given $(L, <, \kappa)$ and $(L', <, \kappa)$ a map $\phi : L \to L'$ is called a κ -homomorphism if for any $x_1, x_2, x \in L$

$$\kappa(\mathbf{x}) = \kappa'(\phi(\mathbf{x})),$$

$$x_1 \leq x_2 \Rightarrow \phi(x_1) \leq' \phi(x_2)$$

and ϕ is injective on the set of all elements of color 0.

• • = • • = •

The structure of the proof for $Aut(\mathbb{Q}, <)$

Fix $\rho \in Aut(\mathbb{Q}, <)$ and consider $Age((\mathcal{O}_{\rho}, \prec, \wp_{\rho}))$ with respect to \wp -homomorphisms.

Theorem 1. The category $Age((\mathcal{O}_{\rho}, \prec, \wp_{\rho}))$ has CAP.

Theorem 2. \mathcal{P}_{ρ} has CAP. (i.e. \mathcal{C}_{ρ} has a generic element.)

Example. When ρ has only +-orbitals, then $x \to x + 1$ is generic in C_{ρ} .

Key notions: The canonical decomposition of $(\mathcal{O}_{\rho}, \prec, \wp_{\rho})$ and its isomorphism type.

イロト イヨト イヨト

The structure of the proof for $Aut(\mathbb{Q}, <)$

Fix $\rho \in Aut(\mathbb{Q}, <)$ and consider $Age((\mathcal{O}_{\rho}, \prec, \wp_{\rho}))$ with respect to \wp -homomorphisms.

Theorem 1. The category $Age((\mathcal{O}_{\rho}, \prec, \wp_{\rho}))$ has CAP.

Theorem 2. \mathcal{P}_{ρ} has CAP. (i.e. \mathcal{C}_{ρ} has a generic element.)

Example. When ρ has only +-orbitals, then $x \to x + 1$ is generic in C_{ρ} .

Key notions: The canonical decomposition of $(\mathcal{O}_{\rho}, \prec, \wp_{\rho})$ and its isomorphism type.

イロト イポト イヨト イヨト 三日

The structure of the proof for $Aut(\mathbb{Q}, <)$

Fix $\rho \in Aut(\mathbb{Q}, <)$ and consider $Age((\mathcal{O}_{\rho}, \prec, \wp_{\rho}))$ with respect to \wp -homomorphisms.

Theorem 1. The category $Age((\mathcal{O}_{\rho}, \prec, \wp_{\rho}))$ has CAP.

Theorem 2. \mathcal{P}_{ρ} has CAP. (i.e. \mathcal{C}_{ρ} has a generic element.)

Example. When ρ has only +-orbitals, then $x \to x+1$ is generic in C_{ρ} .

Key notions: The canonical decomposition of $(\mathcal{O}_{\rho}, \prec, \wp_{\rho})$ and its isomorphism type.

イロト イポト イラト イラト

-

We need new colors

Let (L, \leq, κ) be a colored linear ordering where $\kappa : L \to \{+, -, 0\}$. Let L_0 be a convex subset of L and $\varepsilon \in \{+, -, 0\}$.

• We say that L_0 is of **type** $\infty_{+,-,0}$ if for each natural number n there is a sequence $a_1 < a_2 < \ldots < a_{3(n+1)}$ in L_0 such that

$$\kappa(\mathsf{a}_{3i+1})=+\,,\,\kappa(\mathsf{a}_{3i+2})=-\,,\,\kappa(\mathsf{a}_{3i+3})=0$$
 where $i\leq n.$

When $\gamma \in \mathsf{Aut}(\mathbb{Q})$ and $(\mathcal{O}_{\gamma},\prec)$ is of type $\infty_{+,-,0}$, then

$$\mathcal{C}_{\gamma} = \mathsf{Aut}(\mathbb{Q}, <).$$

 $\begin{array}{c} & \text{WAP and CAP} \\ & \text{Objects} \\ & \text{Results} \\ & \text{Rationals} \\ & \text{The circular ordering with irrational rotation number} \\ & \text{Other cases} \end{array}$

- We say that L_0 is of **type** ε if $\kappa(L_0) = \{\varepsilon\}$ and, moreover, in the case $\varepsilon = 0$ the set L_0 is a singleton.
- We say that L_0 is of **type** ∞_0 if L_0 is infinite and $\kappa(L_0) = \{0\}$.
- Let ε' ∈ {+, -, 0} \ {ε}. We say that L₀ is of type ∞_{εε'} if κ(L₀) = {ε, ε'} and for each natural number n there is a sequence a₁ < a₂ < ... < a_{2(n+1)} in L₀ such that

$$\kappa(a_{2i+1}) = \varepsilon, \ \kappa(a_{2i+2}) = \varepsilon', \ \text{where} \ i \leq n.$$

 $\begin{array}{c} & \text{WAP and CAP} \\ & \text{Objects} \\ & \text{Results} \\ & \text{Rationals} \\ & \text{The circular ordering with irrational rotation number} \\ & \text{Other cases} \end{array}$

- We say that L₀ is of type ε if κ(L₀) = {ε} and, moreover, in the case ε = 0 the set L₀ is a singleton.
- We say that L_0 is of **type** ∞_0 if L_0 is infinite and $\kappa(L_0) = \{0\}$.
- Let ε' ∈ {+, -, 0} \ {ε}. We say that L₀ is of type ∞_{εε'} if κ(L₀) = {ε, ε'} and for each natural number n there is a sequence a₁ < a₂ < ... < a_{2(n+1)} in L₀ such that

$$\kappa(a_{2i+1}) = \varepsilon, \ \kappa(a_{2i+2}) = \varepsilon', \ \text{where} \ i \leq n.$$

 $\begin{array}{c} & \text{WAP and CAP} \\ & \text{Objects} \\ & \text{Results} \\ & \text{Rationals} \\ & \text{The circular ordering with irrational rotation number} \\ & \text{Other cases} \end{array}$

- We say that L₀ is of type ε if κ(L₀) = {ε} and, moreover, in the case ε = 0 the set L₀ is a singleton.
- We say that L_0 is of **type** ∞_0 if L_0 is infinite and $\kappa(L_0) = \{0\}$.
- Let $\varepsilon' \in \{+, -, 0\} \setminus \{\varepsilon\}$. We say that L_0 is of **type** $\infty_{\varepsilon\varepsilon'}$ if $\kappa(L_0) = \{\varepsilon, \varepsilon'\}$ and for each natural number *n* there is a sequence $a_1 < a_2 < \ldots < a_{2(n+1)}$ in L_0 such that

$$\kappa(a_{2i+1}) = \varepsilon, \ \kappa(a_{2i+2}) = \varepsilon', \ \text{where} \ i \leq n.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We now introduce new colors and some partial ordering of them. Let

$$\chi = \{\{+\}, \{-\}, \{0\}, \infty_0\} \cup \{\infty_{\varepsilon_1 \varepsilon_2} \mid \varepsilon_1 \varepsilon_2 \in \{+-, +0, -0\}\}.$$

The ordering of χ corresponds to the relation \subseteq . (In particular when $\varepsilon \in \{\varepsilon_1, \varepsilon_2\}$ we put $\{\varepsilon\} \subset \infty_{\varepsilon_1, \varepsilon_2}$.) We also put $\{0\} \subset \infty_0 \subset \infty_{+0}$ and $\infty_0 \subset \infty_{-0}$.

Note that

$$|\chi| = 7.$$

Orderings colored in 7 colors

Let (L, \leq, κ) be a $\{+, -, 0\}$ -colored linear ordering. To each decomposition $L = \bigcup \{L_i \mid i \leq n\}$ into finitely many intervals of types

$$\tau \in \{+,-,0,\infty_0\} \cup \{\infty_{\varepsilon_1 \varepsilon_2} \, | \, \varepsilon_1 \varepsilon_2 \in \{+-,+0,-0\}\}$$

we associate a χ -coloring $\hat{\kappa}$ of the family $\{L_i \mid i \leq n\}$ as follows: $\hat{\kappa}(L_i) = \{\tau\}$ if L_i is of type $\tau \in \{+, -, 0\}$ $\hat{\kappa}(L_i) = \tau$ if L_i is of type $\tau \in \{\infty_0\} \cup \{\infty_{\varepsilon_1 \varepsilon_2} \mid \varepsilon_1 \varepsilon_2 \in \{+-, +0, -0\}\}.$

As a result the family $\mathcal{L} = \{L_i \mid i \leq n\}$ becomes a finite χ -colored ordered set where the ordering is just \prec .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

WAP and CAP Objects Results Rationals The circular ordering with irrational rotation number Other cases Canonical decomposition

Let (L, \leq, κ) be a $\{+, -, 0\}$ -colored linear ordering. Assume that \mathcal{L} is not of type $\infty_{+, -, 0}$.

Then there is a decomposition $L = L_1 \cup L_2 \cup ... \cup L_n$ into finitely many intervals such that the corresponding χ -colored ordering $(\mathcal{L}, \leq, \hat{\kappa})$ is *canonical*.

Furthermore, for any two finite decompositions of *L* defining *canonical* χ -colored orderings, these orderings are isomorphic.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

WAP and CAP Objects Results Rationals

The circular ordering with irrational rotation number Other cases

Example of canonical decomposition

Aleksander Iwanow

Generics in invariant subsets of automorphisms of homogeneous s

Automorphisms of the circular ordering

Let $\alpha \in Aut(\mathbb{Q}, Cr)$. View α as an orientation preserving homeomorphism of $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$. Let $A : \mathbb{R} \to \mathbb{R}$ be the continuous lift of α (i.e. $\alpha(x + \mathbb{Z}) = A(x) + \mathbb{Z}$).

Principal new case: α does not have periodic points. Poincaré: In this case there is a rotation x + r with irrational r > 0and a continuous monotone $h : \mathbb{S}^1 \to \mathbb{S}^1$ such that $h \circ \alpha = h + r$. It is determined by the map $A^n(x_0) + m \to n \cdot r + m$ for some $x_0, r \in \mathbb{R}$ (this map induces a surjective map

$$\overline{A^n(x_0)+m:m,n\in\mathbb{Z}\}}\to\mathbb{R}).$$

< ロ > < 同 > < 三 > < 三 >

If α is topologically transitive, then *h* is a homeomorphism conjugating α with x + r.

Automorphisms of the circular ordering

Let $\alpha \in Aut(\mathbb{Q}, Cr)$. View α as an orientation preserving homeomorphism of $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$. Let $A : \mathbb{R} \to \mathbb{R}$ be the continuous lift of α (i.e. $\alpha(x + \mathbb{Z}) = A(x) + \mathbb{Z}$).

Principal new case: α does not have periodic points.

Poincaré: In this case there is a rotation x + r with irrational r > 0and a continuous monotone $h : \mathbb{S}^1 \to \mathbb{S}^1$ such that $h \circ \alpha = h + r$. It is determined by the map $A^n(x_0) + m \to n \cdot r + m$ for some $x_0, r \in \mathbb{R}$ (this map induces a surjective map

$$\overline{A^n(x_0)+m:m,n\in\mathbb{Z}\}}\to\mathbb{R}).$$

< ロ > < 同 > < 三 > < 三 >

If α is topologically transitive, then *h* is a homeomorphism conjugating α with x + r.

Automorphisms of the circular ordering

Let $\alpha \in Aut(\mathbb{Q}, Cr)$. View α as an orientation preserving homeomorphism of $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$. Let $A : \mathbb{R} \to \mathbb{R}$ be the continuous lift of α (i.e. $\alpha(x+\mathbb{Z})=A(x)+\mathbb{Z}).$ *Principal new case:* α does not have periodic points. *Poincaré:* In this case there is a rotation x + r with irrational r > 0and a continuous monotone $h: \mathbb{S}^1 \to \mathbb{S}^1$ such that $h \circ \alpha = h + r$. It is determined by the map $A^n(x_0) + m \rightarrow n \cdot r + m$ for some $x_0, r \in \mathbb{R}$ (this map induces a surjective map $\{A^n(x_0) + m : m, n \in \mathbb{Z}\} \rightarrow \mathbb{R}\}$. If α is topologically transitive, then *h* is a homeomorphism

conjugating α with x + r.

Cofinality

Let \mathcal{P} be the set of all finite partial isomorphisms of (\mathbb{Q}, Cr) . $\mathcal{P}_{\alpha} = \{ p \in \mathcal{P} : p \text{ extends to an automorphism from } \mathcal{C}_{\alpha} \}.$

For any $p \in \mathcal{P}_{\alpha}$ there is an extension $\hat{p} \in \mathcal{P}_{\alpha}$ which consists of a single orbit.

Lemma. For any $p \in \mathcal{P}_{\alpha}$ there is a finite partial $p' : \mathbb{S}^1 \to \mathbb{S}^1$ which is a conjugate of p by a +-homeomorphism of \mathbb{S}^1 and which extends to a rotation x + r, $0 \le r \le 1$.

Let p'' be a single-orbit restriction of the rotation x + r which extends p'. It corresponds to a required \hat{p} (by a homeomorphism)

ヘロト ヘ河ト ヘヨト ヘヨト

Cofinality

Let \mathcal{P} be the set of all finite partial isomorphisms of (\mathbb{Q}, Cr) . $\mathcal{P}_{\alpha} = \{ p \in \mathcal{P} : p \text{ extends to an automorphism from } \mathcal{C}_{\alpha} \}.$

For any $p \in \mathcal{P}_{\alpha}$ there is an extension $\hat{p} \in \mathcal{P}_{\alpha}$ which consists of a single orbit.

Lemma. For any $p \in \mathcal{P}_{\alpha}$ there is a finite partial $p' : \mathbb{S}^1 \to \mathbb{S}^1$ which is a conjugate of p by a +-homeomorphism of \mathbb{S}^1 and which extends to a rotation x + r, $0 \le r \le 1$.

Let p'' be a single-orbit restriction of the rotation x + r which extends p'.

It corresponds to a required \hat{p} (by a homeomorphism).

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

CAP for <i>Cr</i>	
Other cases	
Rationals	
Results	
Objects	
WAP and CAP	

Let $\mathcal{P}_{gd} = \{ p \in \mathcal{P} : p \text{ consists of a single orbit } \}.$

Lemma. $\mathcal{P}_{gd} \cap \mathcal{P}_{\alpha}$ has AP.

伺 ト イヨ ト イヨ ト

3

When we view $\rho \in Aut(\mathbb{Q}, S) \setminus Aut(\mathbb{Q}, Cr)$ as a homeomorphism of \mathbb{S}^1 there are two fixed points, say r_1 and r_2 .

As a result (\mathbb{Q}, S, ρ) can be viewed as the partial order B_2 with lines

$$\{x \in \mathbb{Q} : Cr(r_1, x, r_2)\}$$
 or/and $\{x \in \mathbb{Q} : Cr(r_2, x, r_1)\}.$

and its automorphism ρ .

I. The case of the highly homogeneous structure $M = (\mathbb{Q}, B)$ and the case of the ordering $M = B_n$ with $n \in \omega \cup \{\omega\}$ can be derived using the reslts concrning $M = (\mathbb{Q}, <)$.

II. The case of countable ultrahomogeneous partially ordered sets $M = C_n$ with $n \in \omega$. Any $\rho \in \operatorname{Aut}(C_n) \Rightarrow$ the natural \mathbb{Q} -projection, say $\gamma \in \operatorname{Aut}(\mathbb{Q}, <)$, $(\mathcal{O}_{\gamma}, \prec)$ has a coloring, say \wp_{ρ} of

 $\Pi = \{+, -\} \cup \{0_f \, | \, f \text{ is a cycle function for a permutation} \in S_n\}.$

Remaining cases: $M = C_{\omega}$ (there are C_{ρ} without generics), M = D, $M = (\mathbb{Q}, Cr)$ and the rotation number of ρ is rational.

(日) (同) (三) (三) (三)