Generic Besicovitch sets in the plane

Tamás Kátay (ELTE, Hungary)
Conference on Generic Structures, Będlewo, October 2023

Motivation

Kakeya's Needle Problem

Question

What is the minimum area of a planar set in which a unit line segment can be turned by 180° so that it returns to its original position?

Kakeya's Needle Problem

Question

What is the minimum area of a planar set in which a unit line segment can be turned by 180° so that it returns to its original position?

Kakeya's Needle Problem

Question

What is the minimum area of a planar set in which a unit line segment can be turned by 180° so that it returns to its original position?

Kakeya's Needle Problem

Question

What is the minimum area of a planar set in which a unit line segment can be turned by 180° so that it returns to its original position?

Kakeya's Needle Problem

Theorem (Besicovitch, 1919)
A unit line segment can be turned around in an arbitrarily small positive area.

Kakeya's Needle Problem

Theorem (Besicovitch, 1919)
A unit line segment can be turned around in an arbitrarily small positive area.

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)
There exists a compact Besicovitch nullset in the plane.

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)
There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for $n>2$ take $B \times \mathbb{R}^{n-2}$

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for $n>2$ take $B \times \mathbb{R}^{n-2}$

Kakeya Conjecture

For all $n \in \mathbb{N}$ every Besicovitch set $B \subseteq \mathbb{R}^{n}$ is of Hausdorff dimension n.

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for $n>2$ take $B \times \mathbb{R}^{n-2}$

Kakeya Conjecture

For all $n \in \mathbb{N}$ every Besicovitch set $B \subseteq \mathbb{R}^{n}$ is of Hausdorff dimension n.

- true for $n=2$ (Davies, 1971)

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for $n>2$ take $B \times \mathbb{R}^{n-2}$

Kakeya Conjecture

For all $n \in \mathbb{N}$ every Besicovitch set $B \subseteq \mathbb{R}^{n}$ is of Hausdorff dimension n.

- true for $n=2$ (Davies, 1971)
- wide open for $n \geq 3$

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a line in every direction.

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a line in every direction.

With this definition:

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a line in every direction.

With this definition:

- \exists closed Besicovitch nullset

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a line in every direction.

With this definition:

- \exists closed Besicovitch nullset
- the Kakeya Conjecture is open

Besicovitch sets and the Kakeya Conjecture

Definition

A subset $B \subseteq \mathbb{R}^{n}$ is a Besicovitch set if it contains a line in every direction.

With this definition:

- \exists closed Besicovitch nullset
- the Kakeya Conjecture is open
- the two versions are equivalent (T. Keleti and A. Máthé)

The problem

Besicovitch sets in the plane

- From now on we will work in the plane.

Besicovitch sets in the plane

- From now on we will work in the plane.
- Davies: $\operatorname{dim}_{H}(B)<2$ is not possible.

Besicovitch sets in the plane

- From now on we will work in the plane.
- Davies: $\operatorname{dim}_{H}(B)<2$ is not possible.
- closed nullset is possible.

Besicovitch sets in the plane

- From now on we will work in the plane.
- Davies: $\operatorname{dim}_{H}(B)<2$ is not possible.
- closed nullset is possible.
- What is left?

Besicovitch sets in the plane

- From now on we will work in the plane.
- Davies: $\operatorname{dim}_{H}(B)<2$ is not possible.
- closed nullset is possible.
- What is left?

The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that meets every line not contained in it in a nullset?

The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that meets every line not contained in it in a nullset?

Theorem (K, 2019)

There exists a Besicovitch set $B=\bigcup \mathcal{L}$ (where \mathcal{L} is a family of lines) in the plane such that:
(1) B is closed;
(2) $\lambda^{2}(B)=0$;
(3) for every line $e \notin \mathcal{L}$ we have $\lambda^{1}(B \cap e)=0$;
(4) for every line $e \in \mathcal{L}$ we have $\lambda^{1}(e \cap \bigcup(\mathcal{L} \backslash\{e\}))=0$.

Moreover, these properties are generic.

The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that meets every line not contained in it in a nullset?

Theorem (K, 2019)

There exists a Besicovitch set $B=\bigcup \mathcal{L}$ (where \mathcal{L} is a family of lines) in the plane such that:
(1) B is closed;
(2) $\lambda^{2}(B)=0$;
(3) for every line $e \notin \mathcal{L}$ we have $\lambda^{1}(B \cap e)=0$;
(4) for every line $e \in \mathcal{L}$ we have $\lambda^{1}(e \cap \bigcup(\mathcal{L} \backslash\{e\}))=0$.

Moreover, these properties are generic.

Suffices to have lines with every slope in $[0,1]$.

The duality method

Duality

Consider the following point-line correspondence:

$$
(a, b) \longleftrightarrow y=a x+b
$$

Duality

Consider the following point-line correspondence:

$$
(a, b) \longleftrightarrow y=a x+b
$$

Let $K \subseteq \mathbb{R}^{2}$ and let \mathcal{L} be its dual.

Duality

Consider the following point-line correspondence:

$$
(a, b) \longleftrightarrow y=a x+b
$$

Let $K \subseteq \mathbb{R}^{2}$ and let \mathcal{L} be its dual.

Observation 1

The family \mathcal{L} contains a line with every slope in $[0,1]$ if and only if

Duality

Consider the following point-line correspondence:

$$
(a, b) \longleftrightarrow y=a x+b
$$

Let $K \subseteq \mathbb{R}^{2}$ and let \mathcal{L} be its dual.

Observation 1

The family \mathcal{L} contains a line with every slope in $[0,1]$ if and only if $[0,1] \subseteq \operatorname{proj}_{x}(K)$.

Duality

Observation 2

The vertical sections of $\cup \mathcal{L}$ are scaled copies of (non-vertical) orthogonal projections of K.

Duality

Definition

The radial projection of a set $A \subseteq \mathbb{R}^{2}$ from a point v is:

Duality

Definition

The radial projection of a set $A \subseteq \mathbb{R}^{2}$ from a point v is:

Definition

The set $A \subseteq \mathbb{R}^{2}$ is invisible from the point $v \in \mathbb{R}^{2}$ if the radial projection of A from v is a nullset.

Duality

Observation 3

Let $K \subseteq \mathbb{R}^{2}$ and let \mathcal{L} be its dual. Then the non-vertical sections of $\cup \mathcal{L}$ are locally Lipschitz images of radial projections of K.

Duality

The point set K
The union of its dual \mathcal{L}
$[0,1] \subseteq \operatorname{proj}_{x}(K) \quad \leftrightarrow \quad$ every slope in $[0,1]$ occurs in \mathcal{L}

Duality

The point set K

$$
[0,1] \subseteq \operatorname{proj}_{x}(K) \quad \leftrightarrow \quad \text { every slope in }[0,1] \text { occurs in } \mathcal{L}
$$

(non-vert.) orthogonal projections $\leftrightarrow \quad$ vertical sections

Duality

The point set K
The union of its dual \mathcal{L}
$[0,1] \subseteq \operatorname{proj}_{x}(K) \quad \leftrightarrow \quad$ every slope in $[0,1]$ occurs in \mathcal{L}
(non-vert.) orthogonal projections radial projections
\leftrightarrow
\leftrightarrow
vertical sections
non-vertical sections

Duality

The point set K
The union of its dual \mathcal{L}

$$
[0,1] \subseteq \operatorname{proj}_{x}(K) \quad \leftrightarrow \quad \text { every slope in }[0,1] \text { occurs in } \mathcal{L}
$$

(non-vert.) orthogonal projections radial projections compact
vertical sections non-vertical sections closed

Duality

The point set K
The union of its dual \mathcal{L}

$$
[0,1] \subseteq \operatorname{proj}_{x}(K) \quad \leftrightarrow \quad \text { every slope in }[0,1] \text { occurs in } \mathcal{L}
$$

(non-vert.) orthogonal projections	\leftrightarrow	vertical sections
radial projections	\leftrightarrow	non-vertical sections
compact	\rightarrow	closed

Thus it suffices to prove the following:

Theorem

There exists a compact set $K \subseteq[0,1]^{2}$ such that:
(1) $\operatorname{proj}_{x}(K)=[0,1]$;
(2) its orthogonal projection is a nullset in every non-vertical direction;
(3) it is invisible from every point of the plane.

The generic code set

The space of code sets

- The set $\mathcal{K}\left([0,1]^{2}\right)$ of all nonempty compact subsets of $[0,1]^{2}$ is a compact metric space with the Hausdorff metric.

The space of code sets

- The set $\mathcal{K}\left([0,1]^{2}\right)$ of all nonempty compact subsets of $[0,1]^{2}$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C}=\left\{K \in \mathcal{K}\left([0,1]^{2}\right)\right.$: $\left.\operatorname{proj}_{x}(K)=[0,1]\right\}$ is closed.

The space of code sets

- The set $\mathcal{K}\left([0,1]^{2}\right)$ of all nonempty compact subsets of $[0,1]^{2}$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C}=\left\{K \in \mathcal{K}\left([0,1]^{2}\right)\right.$: $\left.\operatorname{proj}_{x}(K)=[0,1]\right\}$ is closed.
- \Longrightarrow The Baire Category Theorem holds in \mathcal{C}.

The space of code sets

- The set $\mathcal{K}\left([0,1]^{2}\right)$ of all nonempty compact subsets of $[0,1]^{2}$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C}=\left\{K \in \mathcal{K}\left([0,1]^{2}\right)\right.$: $\left.\operatorname{proj}_{x}(K)=[0,1]\right\}$ is closed.
- \Longrightarrow The Baire Category Theorem holds in \mathcal{C}.
- Claim. The generic $K \in \mathcal{C}$ is suitable.

The space of code sets

- The set $\mathcal{K}\left([0,1]^{2}\right)$ of all nonempty compact subsets of $[0,1]^{2}$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C}=\left\{K \in \mathcal{K}\left([0,1]^{2}\right)\right.$: $\left.\operatorname{proj}_{x}(K)=[0,1]\right\}$ is closed.
- \Longrightarrow The Baire Category Theorem holds in \mathcal{C}.
- Claim. The generic $K \in \mathcal{C}$ is suitable.
(1) $\operatorname{proj}_{x}(K)=[0,1]$;
(2) its orthogonal projection is a nullset in every non-vertical direction;
(3) it is invisible from every point of the plane.

The space of code sets

- The set $\mathcal{K}\left([0,1]^{2}\right)$ of all nonempty compact subsets of $[0,1]^{2}$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C}=\left\{K \in \mathcal{K}\left([0,1]^{2}\right)\right.$: $\left.\operatorname{proj}_{x}(K)=[0,1]\right\}$ is closed.
- \Longrightarrow The Baire Category Theorem holds in \mathcal{C}.
- Claim. The generic $K \in \mathcal{C}$ is suitable.
(1) $\operatorname{proj}_{x}(K)=[0,1]$;
(2) its orthogonal projection is a nullset in every non-vertical direction;
(3) it is invisible from every point of the plane.

It suffices to prove separately that (2) and (3) are generic properties in \mathcal{C}.

Concrete examples and genericity

Concrete example for (2) in $\mathcal{C} \quad \longrightarrow \quad(2)$ is generic in \mathcal{C}.

Concrete examples and genericity

Concrete example for (2) in \mathcal{C} \qquad (2) is generic in \mathcal{C}.

Concrete example for (3) in $\mathcal{C} \quad \longrightarrow \quad(3)$ is generic in \mathcal{C}.

Concrete examples and genericity

Concrete example for (2) in \mathcal{C} \qquad (2) is generic in \mathcal{C}.

Concrete example for (3) in \mathcal{C}
(3) is generic in \mathcal{C}.
$\Longrightarrow(2) \wedge(3)$ is generic in \mathcal{C}.

Concrete examples and genericity

Concrete example for (2) in \mathcal{C}
\longrightarrow
(2) is generic in \mathcal{C}.

Concrete example for (3) in $\mathcal{C} \quad \longrightarrow \quad(3)$ is generic in \mathcal{C}.
$\Longrightarrow(2) \wedge(3)$ is generic in \mathcal{C}.

Question

Is there a concrete example for $(2) \wedge(3)$ in \mathcal{C} ?

Concrete examples and genericity

Concrete example for (2) in $\mathcal{C} \quad \longrightarrow \quad(2)$ is generic in \mathcal{C}.
Concrete example for (3) in $\mathcal{C} \quad \longrightarrow \quad(3)$ is generic in \mathcal{C}.
$\Longrightarrow(2) \wedge(3)$ is generic in \mathcal{C}.

Question

Is there a concrete example for $(2) \wedge(3)$ in \mathcal{C} ?

Example for (2): Venetian blind-type construction (M. Talagrand).

Concrete examples and genericity

Concrete example for (2) in $\mathcal{C} \quad \longrightarrow \quad(2)$ is generic in \mathcal{C}.
Concrete example for (3) in $\mathcal{C} \quad \longrightarrow \quad(3)$ is generic in \mathcal{C}.
$\Longrightarrow(2) \wedge(3)$ is generic in \mathcal{C}.

Question

Is there a concrete example for $(2) \wedge(3)$ in \mathcal{C} ?

Example for (2): Venetian blind-type construction (M. Talagrand).
Example for (3): the four-corner Cantor set (K. Simon, B. Solomyak).

Concrete examples and genericity

Concrete example for (2) in $\mathcal{C} \quad \longrightarrow \quad(2)$ is generic in \mathcal{C}.
Concrete example for (3) in $\mathcal{C} \quad \longrightarrow \quad(3)$ is generic in \mathcal{C}.
$\Longrightarrow(2) \wedge(3)$ is generic in \mathcal{C}.

Question

Is there a concrete example for $(2) \wedge(3)$ in \mathcal{C} ?

Example for (2): Venetian blind-type construction (M. Talagrand).
Example for (3): the four-corner Cantor set (K. Simon, B. Solomyak).

:: :
:: :: :: ::

$::$
$::$
$:$
:: : :
:: ::

Open problem: uniform
Besicovitch sets

Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that contains exactly one line in every direction?

Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that contains exactly one line in every direction?

Partial results and comments:

Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that contains exactly one line in every direction?

Partial results and comments:
What does this mean on the level of code sets?

Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?
We need a set $K \subseteq[0,1]^{2}$ that meets every vertical line in one point.

Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?
We need a set $K \subseteq[0,1]^{2}$ that meets every vertical line in one point.
BUT! How can we make sure that the union of the dual \mathcal{L} does not cover an extra line?

Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?
We need a set $K \subseteq[0,1]^{2}$ that meets every vertical line in one point.
BUT! How can we make sure that the union of the dual \mathcal{L} does not cover an extra line?

It does not happen for a generic $K \in \mathcal{C}$.

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\bigcup \mathcal{L}$ is closed,

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\cup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\cup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\bigcup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\cup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Take a Borel uniformization \widetilde{K} of K (that is, we pass to a Borel subset $\widetilde{K} \subseteq K$ that meets every vertical line in exactly one point).

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\cup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Take a Borel uniformization \widetilde{K} of K (that is, we pass to a Borel subset $\widetilde{K} \subseteq K$ that meets every vertical line in exactly one point).

Let $\widetilde{\mathcal{L}}$ be the dual of \widetilde{K}.

Open problem: uniform Besicovitch sets

Idea: start with a generic $K \in \mathcal{C}$.
Then:

- $\cup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Take a Borel uniformization \widetilde{K} of K (that is, we pass to a Borel subset $\widetilde{K} \subseteq K$ that meets every vertical line in exactly one point).

Let $\widetilde{\mathcal{L}}$ be the dual of \widetilde{K}.
Is $\bigcup \widetilde{\mathcal{L}}$ Borel?

Open problem: uniform Besicovitch sets

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(a, b, t)=(t, a t+b)$.

Open problem: uniform Besicovitch sets

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(a, b, t)=(t, a t+b)$.
$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.

Open problem: uniform Besicovitch sets

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(a, b, t)=(t, a t+b)$.
$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.
Follows from the Lusin-Novikov theorem:

Open problem: uniform Besicovitch sets

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(a, b, t)=(t, a t+b)$.
$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.
Follows from the Lusin-Novikov theorem:

Fact

The image of a Borel set under a countable-to-one continuous function is Borel.

Open problem: uniform Besicovitch sets

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(a, b, t)=(t, a t+b)$.
$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.
Follows from the Lusin-Novikov theorem:

Fact

The image of a Borel set under a countable-to-one continuous function is Borel.

Thus it suffices to prove that $\left.f\right|_{\widetilde{\mathcal{K}} \times \mathbb{R}}$ is countable-to-one.

Open problem: uniform Besicovitch sets

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(a, b, t)=(t, a t+b)$.
$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.
Follows from the Lusin-Novikov theorem:

Fact

The image of a Borel set under a countable-to-one continuous function is Borel.

Thus it suffices to prove that $\left.\right|_{\widetilde{K} \times \mathbb{R}}$ is countable-to-one.

Observation 2

The inverse image of a point (u, v) is a line parallel to the $x y$-plane.

Open problem: uniform Besicovitch sets

Enough: \widetilde{K} does not contain uncountably many collinear points.

Open problem: uniform Besicovitch sets

Enough: \widetilde{K} does not contain uncountably many collinear points.
Enough: K does not contain uncountably many collinear points.

Open problem: uniform Besicovitch sets

Enough: \widetilde{K} does not contain uncountably many collinear points.
Enough: K does not contain uncountably many collinear points.

Question

Does the generic $K \in \mathcal{C}$ contain uncountably many collinear points? Does it contain 3 collinear points?

Thank you for your attention!

The main theorem again

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^{2}$ that meets every line not contained in it in a nullset?

Theorem (K, 2019)

There exists a Besicovitch set $B=\bigcup \mathcal{L}$ (where \mathcal{L} is a family of lines) in the plane such that:
(1) B is closed;
(2) $\lambda^{2}(B)=0$;
(3) for every line $e \notin \mathcal{L}$ we have $\lambda^{1}(B \cap e)=0$;
(4) for every line $e \in \mathcal{L}$ we have $\lambda^{1}(e \cap \bigcup(\mathcal{L} \backslash\{e\}))=0$.

Background

Theorem (K. Simon, B. Solomyak)

Let $K \subseteq \mathbb{R}^{2}$ be set with the following properties:
(1) it is self-similar;
(2) it has Hausdorff dimension 1;
(3) it satisfies the Open Set Condition;
(4) it is not on a line.

Then K is invisible from every point of the plane.

