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Motivation



Kakeya’s Needle Problem

Question
What is the minimum area of a planar set in which a unit line
segment can be turned by 180◦ so that it returns to its original
position?
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Kakeya’s Needle Problem

Theorem (Besicovitch, 1919)
A unit line segment can be turned around in an arbitrarily small positive
area.
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Besicovitch sets and the Kakeya Conjecture

Definition
A subset B ⊆ Rn is a Besicovitch set if it contains a unit line segment
in every direction.

Theorem (Besicovitch, 1919)
There exists a compact Besicovitch nullset in the plane.

• solves Kakeya’s Needle Problem

• for n > 2 take B × Rn−2

Kakeya Conjecture
For all n ∈ N every Besicovitch set B ⊆ Rn is of Hausdorff dimension n.

• true for n = 2 (Davies, 1971)

• wide open for n ≥ 3
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Besicovitch sets and the Kakeya Conjecture

Definition
A subset B ⊆ Rn is a Besicovitch set if it contains a line in every
direction.

With this definition:

• ∃ closed Besicovitch nullset

• the Kakeya Conjecture is open

• the two versions are equivalent (T. Keleti and A. Máthé)
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The problem



Besicovitch sets in the plane

• From now on we will work in the plane.

• Davies: dimH(B) < 2 is not possible.
• closed nullset is possible.
• What is left?
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The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset B ⊆ R2 that meets every line not
contained in it in a nullset?

Theorem (K, 2019)
There exists a Besicovitch set B =

⋃
L (where L is a family of lines) in

the plane such that:

(1) B is closed;

(2) λ2(B) = 0;

(3) for every line e /∈ L we have λ1(B ∩ e) = 0;

(4) for every line e ∈ L we have λ1(e ∩
⋃
(L \ {e})) = 0.

Moreover, these properties are generic.

Suffices to have lines with every slope in [0, 1].
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The duality method



Duality

Consider the following point-line correspondence:

(a, b) ←→ y = ax + b .

Let K ⊆ R2 and let L be its dual.

Observation 1
The family L contains a line with every slope in [0, 1] if and only if
[0, 1] ⊆ projx(K ).
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Duality

Observation 2
The vertical sections of

⋃
L are scaled copies of (non-vertical)

orthogonal projections of K .
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Duality

Definition

The radial projection of a set A ⊆ R2 from a point v is:

Definition

The set A ⊆ R2 is invisible from the point v ∈ R2 if the radial
projection of A from v is a nullset.
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Definition

The set A ⊆ R2 is invisible from the point v ∈ R2 if the radial
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Duality

Observation 3

Let K ⊆ R2 and let L be its dual. Then the non-vertical sections of⋃
L are locally Lipschitz images of radial projections of K .
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Duality

The point set K The union of its dual L

[0, 1] ⊆ projx(K ) ↔ every slope in [0, 1] occurs in L

(non-vert.) orthogonal projections ↔ vertical sections
radial projections ↔ non-vertical sections

compact → closed
Thus it suffices to prove the following:

Theorem

There exists a compact set K ⊆ [0, 1]2 such that:

(1) projx(K ) = [0, 1];

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

11



Duality

The point set K The union of its dual L

[0, 1] ⊆ projx(K ) ↔ every slope in [0, 1] occurs in L
(non-vert.) orthogonal projections ↔ vertical sections

radial projections ↔ non-vertical sections
compact → closed

Thus it suffices to prove the following:

Theorem

There exists a compact set K ⊆ [0, 1]2 such that:

(1) projx(K ) = [0, 1];

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

11



Duality

The point set K The union of its dual L

[0, 1] ⊆ projx(K ) ↔ every slope in [0, 1] occurs in L
(non-vert.) orthogonal projections ↔ vertical sections

radial projections ↔ non-vertical sections

compact → closed
Thus it suffices to prove the following:

Theorem

There exists a compact set K ⊆ [0, 1]2 such that:

(1) projx(K ) = [0, 1];

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

11



Duality

The point set K The union of its dual L

[0, 1] ⊆ projx(K ) ↔ every slope in [0, 1] occurs in L
(non-vert.) orthogonal projections ↔ vertical sections

radial projections ↔ non-vertical sections
compact → closed

Thus it suffices to prove the following:

Theorem

There exists a compact set K ⊆ [0, 1]2 such that:

(1) projx(K ) = [0, 1];

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

11



Duality

The point set K The union of its dual L

[0, 1] ⊆ projx(K ) ↔ every slope in [0, 1] occurs in L
(non-vert.) orthogonal projections ↔ vertical sections

radial projections ↔ non-vertical sections
compact → closed

Thus it suffices to prove the following:

Theorem

There exists a compact set K ⊆ [0, 1]2 such that:

(1) projx(K ) = [0, 1];

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

11



The generic code set



The space of code sets

• The set K([0, 1]2) of all nonempty compact subsets of [0, 1]2 is a
compact metric space with the Hausdorff metric.

• The subspace C = {K ∈ K([0, 1]2) : projx(K ) = [0, 1]} is closed.

• =⇒ The Baire Category Theorem holds in C.
• Claim. The generic K ∈ C is suitable.

(1) projx(K ) = [0, 1];

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

It suffices to prove separately that (2) and (3) are generic properties in C.
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Concrete examples and genericity

Concrete example for (2) in C −→ (2) is generic in C.

Concrete example for (3) in C −→ (3) is generic in C.

=⇒ (2)∧(3) is generic in C.

Question
Is there a concrete example for (2)∧(3) in C?

Example for (2): Venetian blind-type construction (M. Talagrand).

Example for (3): the four-corner Cantor set (K. Simon, B. Solomyak).
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Open problem: uniform
Besicovitch sets



Open problem: uniform Besicovitch sets

Question (Márton Elekes)

Is there a Borel Besicovitch nullset B ⊆ R2 that contains exactly one
line in every direction?

Partial results and comments:

What does this mean on the level of code sets?

We need a set K ⊆ [0, 1]2 that meets every vertical line in one point.

BUT! How can we make sure that the union of the dual L does not
cover an extra line?

It does not happen for a generic K ∈ C.
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Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Idea: start with a generic K ∈ C.

Then:

•
⋃
L is closed,

•
⋃
L is a nullset,

• there are no ”extra lines”,

• may have more than one line in some directions.

Take a Borel uniformization K̃ of K (that is, we pass to a Borel subset
K̃ ⊆ K that meets every vertical line in exactly one point).

Let L̃ be the dual of K̃ .

Is
⋃
L̃ Borel?

15



Open problem: uniform Besicovitch sets

Observation 1

The set
⋃
L̃ is the image of K̃ × R under the continuous map

f : R3 → R2, f (a, b, t) = (t, at + b).

=⇒
⋃
L̃ is analytic.

Follows from the Lusin-Novikov theorem:

Fact
The image of a Borel set under a countable-to-one continuous function
is Borel.

Thus it suffices to prove that f |K̃×R is countable-to-one.

Observation 2
The inverse image of a point (u, v) is a line parallel to the xy -plane.
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Open problem: uniform Besicovitch sets

Enough: K̃ does not contain uncountably many collinear points.

Enough: K does not contain uncountably many collinear points.

Question
Does the generic K ∈ C contain uncountably many collinear points?
Does it contain 3 collinear points?
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Thank you for your attention!
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The main theorem again

Question (Tamás Keleti)

Is there a Besicovitch nullset B ⊆ R2 that meets every line not
contained in it in a nullset?

Theorem (K, 2019)
There exists a Besicovitch set B =

⋃
L (where L is a family of lines) in

the plane such that:

(1) B is closed;

(2) λ2(B) = 0;

(3) for every line e /∈ L we have λ1(B ∩ e) = 0;

(4) for every line e ∈ L we have λ1(e ∩
⋃
(L \ {e})) = 0.
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Background

Theorem (K. Simon, B. Solomyak)

Let K ⊆ R2 be set with the following properties:

(1) it is self-similar;

(2) it has Hausdorff dimension 1;

(3) it satisfies the Open Set Condition;

(4) it is not on a line.

Then K is invisible from every point of the plane.
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