Generic Besicovitch sets in the plane

Tamás Kátay (ELTE, Hungary)

Conference on Generic Structures, Będlewo, October 2023

Motivation

Kakeya's Needle Problem

Theorem (Besicovitch, 1919)

A unit line segment can be turned around in an arbitrarily small positive area.

Kakeya's Needle Problem

Theorem (Besicovitch, 1919)

A unit line segment can be turned around in an arbitrarily small positive area.

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

• solves Kakeya's Needle Problem

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for n > 2 take $B \times \mathbb{R}^{n-2}$

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for n > 2 take $B \times \mathbb{R}^{n-2}$

Kakeya Conjecture

For all $n \in \mathbb{N}$ every Besicovitch set $B \subseteq \mathbb{R}^n$ is of Hausdorff dimension n.

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for n > 2 take $B \times \mathbb{R}^{n-2}$

Kakeya Conjecture

For all $n \in \mathbb{N}$ every Besicovitch set $B \subseteq \mathbb{R}^n$ is of Hausdorff dimension n.

• true for n = 2 (Davies, 1971)

Definition

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a unit line segment in every direction.

Theorem (Besicovitch, 1919)

There exists a compact Besicovitch nullset in the plane.

- solves Kakeya's Needle Problem
- for n > 2 take $B \times \mathbb{R}^{n-2}$

Kakeya Conjecture

For all $n \in \mathbb{N}$ every Besicovitch set $B \subseteq \mathbb{R}^n$ is of Hausdorff dimension n.

- true for n = 2 (Davies, 1971)
- wide open for $n \ge 3$

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a line in every direction.

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a line in every direction.

With this definition:

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a line in every direction.

With this definition:

• \exists closed Besicovitch nullset

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a line in every direction.

With this definition:

- \exists closed Besicovitch nullset
- the Kakeya Conjecture is open

A subset $B \subseteq \mathbb{R}^n$ is a **Besicovitch set** if it contains a line in every direction.

With this definition:

- \exists closed Besicovitch nullset
- the Kakeya Conjecture is open
- the two versions are equivalent (T. Keleti and A. Máthé)

The problem

• From now on we will work in the plane.

- From now on we will work in the plane.
- Davies: $\dim_H(B) < 2$ is not possible.

- From now on we will work in the plane.
- Davies: $\dim_H(B) < 2$ is not possible.
- closed nullset is possible.

- From now on we will work in the plane.
- Davies: $\dim_H(B) < 2$ is not possible.
- closed nullset is possible.
- What is left?

- From now on we will work in the plane.
- Davies: $\dim_H(B) < 2$ is not possible.
- closed nullset is possible.
- What is left?

The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset $B\subseteq \mathbb{R}^2$ that meets every line not contained in it in a nullset?

The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^2$ that meets every line not contained in it in a nullset?

Theorem (K, 2019)

There exists a Besicovitch set $B = \bigcup \mathcal{L}$ (where \mathcal{L} is a family of lines) in the plane such that:

(1) B is closed;

(2) $\lambda^2(B) = 0;$

(3) for every line $e \notin \mathcal{L}$ we have $\lambda^1(B \cap e) = 0$;

(4) for every line $e \in \mathcal{L}$ we have $\lambda^1(e \cap \bigcup(\mathcal{L} \setminus \{e\})) = 0$.

Moreover, these properties are generic.

The main theorem

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^2$ that meets every line not contained in it in a nullset?

Theorem (K, 2019)

There exists a Besicovitch set $B = \bigcup \mathcal{L}$ (where \mathcal{L} is a family of lines) in the plane such that:

(1) B is closed;

(2) $\lambda^2(B) = 0;$

(3) for every line $e \notin \mathcal{L}$ we have $\lambda^1(B \cap e) = 0$;

(4) for every line $e \in \mathcal{L}$ we have $\lambda^1(e \cap \bigcup(\mathcal{L} \setminus \{e\})) = 0$.

Moreover, these properties are generic.

Suffices to have lines with every slope in [0, 1].

The duality method

$$(a,b) \iff y = ax + b \ .$$

$$(a,b) \leftrightarrow y = ax + b$$
.

Let $K \subseteq \mathbb{R}^2$ and let \mathcal{L} be its dual.

$$(a,b) \leftrightarrow y = ax + b$$
.

Let $K \subseteq \mathbb{R}^2$ and let \mathcal{L} be its dual.

Observation 1

The family $\mathcal L$ contains a line with every slope in [0,1] if and only if

$$(a,b) \leftrightarrow y = ax + b$$
.

Let $K \subseteq \mathbb{R}^2$ and let \mathcal{L} be its dual.

Observation 1

The family \mathcal{L} contains a line with every slope in [0,1] if and only if $[0,1] \subseteq \text{proj}_x(\mathcal{K})$.

Duality

Observation 2

The vertical sections of $\bigcup \mathcal{L}$ are scaled copies of (non-vertical) orthogonal projections of K.

Duality

Definition

The radial projection of a set $A \subseteq \mathbb{R}^2$ from a point v is:

Definition

The radial projection of a set $A \subseteq \mathbb{R}^2$ from a point v is:

Definition

The set $A \subseteq \mathbb{R}^2$ is **invisible** from the point $v \in \mathbb{R}^2$ if the radial projection of A from v is a nullset.

Observation 3

Let $K \subseteq \mathbb{R}^2$ and let \mathcal{L} be its dual. Then the non-vertical sections of $\bigcup \mathcal{L}$ are locally Lipschitz images of radial projections of K.

The point set K	The union of its dual ${\cal L}$

 $[0,1] \subseteq \operatorname{proj}_{X}(K) \qquad \qquad \leftrightarrow \quad \text{every slope in } [0,1] \text{ occurs in } \mathcal{L}$

The point set K	The union of its dual ${\cal L}$

$$[0,1] \subseteq \operatorname{proj}_{\mathsf{x}}(\mathsf{K})$$

(non-vert.) orthogonal projections

 $\begin{array}{ll} \leftrightarrow & \text{every slope in } [0,1] \text{ occurs in } \mathcal{L} \\ \leftrightarrow & \text{ vertical sections} \end{array}$

The point set K		The union of its dual ${\cal L}$
$[0,1]\subseteq proj_x(\mathcal{K})$	\leftrightarrow	every slope in $[0,1]$ occurs in ${\cal L}$
(non-vert.) orthogonal projections	\leftrightarrow	vertical sections

 \leftrightarrow

radial projections

vertical sections non-vertical sections

The point set K		The union of its dual ${\cal L}$
$[0,1] \subseteq \operatorname{proj}_{\kappa}(\mathcal{K})$ (non-vert.) orthogonal projections radial projections compact	$\begin{array}{c} \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \\ \rightarrow \end{array}$	every slope in [0, 1] occurs in \mathcal{L} vertical sections non-vertical sections closed

The point set K		The union of its dual $\ensuremath{\mathcal{L}}$
$[0,1]\subseteq proj_{x}(K)$	\leftrightarrow	every slope in $[0,1]$ occurs in $\mathcal L$
(non-vert.) orthogonal projections	\leftrightarrow	vertical sections
radial projections	\leftrightarrow	non-vertical sections
compact	\rightarrow	closed
Thus it suffices to prove the following	g:	

Theorem

There exists a compact set $K \subseteq [0,1]^2$ such that:

(1) $\text{proj}_{X}(K) = [0, 1];$

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

The generic code set

• The set $\mathcal{K}([0,1]^2)$ of all nonempty compact subsets of $[0,1]^2$ is a compact metric space with the Hausdorff metric.

- The set $\mathcal{K}([0,1]^2)$ of all nonempty compact subsets of $[0,1]^2$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C} = \{ \mathcal{K} \in \mathcal{K}([0,1]^2) : \text{ proj}_x(\mathcal{K}) = [0,1] \}$ is closed.

- The set $\mathcal{K}([0,1]^2)$ of all nonempty compact subsets of $[0,1]^2$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C} = \{ \mathcal{K} \in \mathcal{K}([0,1]^2) : \text{ proj}_x(\mathcal{K}) = [0,1] \}$ is closed.
- \implies The Baire Category Theorem holds in \mathcal{C} .

- The set $\mathcal{K}([0,1]^2)$ of all nonempty compact subsets of $[0,1]^2$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C} = \{ \mathcal{K} \in \mathcal{K}([0,1]^2) : \operatorname{proj}_x(\mathcal{K}) = [0,1] \}$ is closed.
- \implies The Baire Category Theorem holds in C.
- **Claim.** The generic $K \in C$ is suitable.

- The set $\mathcal{K}([0,1]^2)$ of all nonempty compact subsets of $[0,1]^2$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C} = \{ \mathcal{K} \in \mathcal{K}([0,1]^2) : \text{ proj}_x(\mathcal{K}) = [0,1] \}$ is closed.
- \implies The Baire Category Theorem holds in \mathcal{C} .
- **Claim.** The generic $K \in C$ is suitable.

(1) $\text{proj}_{x}(K) = [0, 1];$

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

- The set $\mathcal{K}([0,1]^2)$ of all nonempty compact subsets of $[0,1]^2$ is a compact metric space with the Hausdorff metric.
- The subspace $\mathcal{C} = \{ \mathcal{K} \in \mathcal{K}([0,1]^2) : \text{ proj}_x(\mathcal{K}) = [0,1] \}$ is closed.
- \implies The Baire Category Theorem holds in \mathcal{C} .
- **Claim.** The generic $K \in C$ is suitable.

(1) $\text{proj}_{x}(K) = [0, 1];$

(2) its orthogonal projection is a nullset in every non-vertical direction;

(3) it is invisible from every point of the plane.

It suffices to prove *separately* that (2) and (3) are generic properties in C.

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (3) in $\mathcal{C} \longrightarrow$ (3) is generic in \mathcal{C} .

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (3) in $\mathcal{C} \longrightarrow$ (3) is generic in \mathcal{C} .

 \implies (2) \land (3) is generic in C.

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (3) in $\mathcal{C} \longrightarrow$ (3) is generic in \mathcal{C} .

 \implies (2) \land (3) is generic in C.

Question

Is there a concrete example for (2) \land (3) in C?

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (3) in $\mathcal{C} \longrightarrow$ (3) is generic in \mathcal{C} .

 \implies (2) \land (3) is generic in C.

Question

Is there a concrete example for (2) \land (3) in C?

Example for (2): Venetian blind-type construction (M. Talagrand).

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (3) in $\mathcal{C} \longrightarrow$ (3) is generic in \mathcal{C} .

 \implies (2) \land (3) is generic in C.

Question

Is there a concrete example for $(2) \land (3)$ in C?

Example for (2): Venetian blind-type construction (M. Talagrand).

Example for (3): the four-corner Cantor set (K. Simon, B. Solomyak).

Concrete example for (2) in $\mathcal{C} \longrightarrow$ (2) is generic in \mathcal{C} .

Concrete example for (3) in $\mathcal{C} \longrightarrow$ (3) is generic in \mathcal{C} .

 \implies (2) \land (3) is generic in C.

Question

Is there a concrete example for $(2) \land (3)$ in C?

Example for (2): Venetian blind-type construction (M. Talagrand).

Example for (3): the four-corner Cantor set (K. Simon, B. Solomyak).

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^2$ that contains exactly one line in every direction?

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^2$ that contains exactly one line in every direction?

Partial results and comments:

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^2$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^2$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?

We need a set $K \subseteq [0,1]^2$ that meets every vertical line in one point.

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^2$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?

We need a set $\mathcal{K}\subseteq [0,1]^2$ that meets every vertical line in one point.

BUT! How can we make sure that the union of the dual $\mathcal L$ does not cover an extra line?

Is there a Borel Besicovitch nullset $B \subseteq \mathbb{R}^2$ that contains exactly one line in every direction?

Partial results and comments:

What does this mean on the level of code sets?

We need a set $K \subseteq [0,1]^2$ that meets every vertical line in one point.

BUT! How can we make sure that the union of the dual $\mathcal L$ does not cover an extra line?

It does not happen for a **generic** $K \in C$.

Idea: start with a generic $K \in C$.

Idea: start with a generic $K \in C$.

Then:

• $\bigcup \mathcal{L}$ is closed,

Idea: start with a generic $K \in C$.

Then:

- $\bigcup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,

Idea: start with a generic $K \in C$.

Then:

- $\bullet \ \bigcup \mathcal{L} \text{ is closed,} \\$
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",

Idea: start with a generic $K \in C$.

Then:

- $\bullet \ \bigcup \mathcal{L} \text{ is closed,} \\$
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Idea: start with a generic $K \in C$.

Then:

- $\bullet \ \bigcup \mathcal{L} \text{ is closed,} \\$
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Take a **Borel uniformization** \widetilde{K} of K (that is, we pass to a Borel subset $\widetilde{K} \subseteq K$ that meets every vertical line in exactly one point).

Idea: start with a generic $K \in C$.

Then:

- $\bigcup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Take a **Borel uniformization** \widetilde{K} of K (that is, we pass to a Borel subset $\widetilde{K} \subseteq K$ that meets every vertical line in exactly one point).

Let $\widetilde{\mathcal{L}}$ be the dual of \widetilde{K} .

Idea: start with a generic $K \in C$.

Then:

- $\bigcup \mathcal{L}$ is closed,
- $\bigcup \mathcal{L}$ is a nullset,
- there are no "extra lines",
- may have more than one line in some directions.

Take a **Borel uniformization** \widetilde{K} of K (that is, we pass to a Borel subset $\widetilde{K} \subseteq K$ that meets every vertical line in exactly one point).

Let $\widetilde{\mathcal{L}}$ be the dual of \widetilde{K} .

Is $\bigcup \widetilde{\mathcal{L}}$ Borel?
Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(a, b, t) = (t, at + b).

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(a, b, t) = (t, at + b).

 $\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(a, b, t) = (t, at + b).

 $\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.

Follows from the Lusin-Novikov theorem:

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(a, b, t) = (t, at + b).

$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.

Follows from the Lusin-Novikov theorem:

Fact

The image of a Borel set under a countable-to-one continuous function is Borel.

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(a, b, t) = (t, at + b).

$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.

Follows from the Lusin-Novikov theorem:

Fact

The image of a Borel set under a countable-to-one continuous function is Borel.

Thus it suffices to prove that $f|_{\widetilde{K}\times\mathbb{R}}$ is countable-to-one.

Observation 1

The set $\bigcup \widetilde{\mathcal{L}}$ is the image of $\widetilde{K} \times \mathbb{R}$ under the continuous map $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(a, b, t) = (t, at + b).

$\Longrightarrow \bigcup \widetilde{\mathcal{L}}$ is analytic.

Follows from the Lusin-Novikov theorem:

Fact

The image of a Borel set under a countable-to-one continuous function is Borel.

Thus it suffices to prove that $f|_{\widetilde{K}\times\mathbb{R}}$ is countable-to-one.

Observation 2

The inverse image of a point (u, v) is a line parallel to the *xy*-plane.

Enough: \widetilde{K} does not contain uncountably many collinear points.

Enough: \widetilde{K} does not contain uncountably many collinear points. Enough: K does not contain uncountably many collinear points. Enough: \widetilde{K} does not contain uncountably many collinear points.

Enough: K does not contain uncountably many collinear points.

Question

Does the generic $K \in C$ contain uncountably many collinear points? Does it contain 3 collinear points?

Thank you for your attention!

Question (Tamás Keleti)

Is there a Besicovitch nullset $B \subseteq \mathbb{R}^2$ that meets every line not contained in it in a nullset?

Theorem (K, 2019)

There exists a Besicovitch set $B = \bigcup \mathcal{L}$ (where \mathcal{L} is a family of lines) in the plane such that:

```
(1) B is closed;
```

```
(2) \lambda^2(B) = 0;
```

(3) for every line $e \notin \mathcal{L}$ we have $\lambda^1(B \cap e) = 0$;

(4) for every line $e \in \mathcal{L}$ we have $\lambda^1(e \cap \bigcup(\mathcal{L} \setminus \{e\})) = 0$.

Theorem (K. Simon, B. Solomyak)

Let $K \subseteq \mathbb{R}^2$ be set with the following properties:

(1) it is self-similar;

- (2) it has Hausdorff dimension 1;
- (3) it satisfies the Open Set Condition;

(4) it is not on a line.

Then K is invisible from every point of the plane.