

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Krakow

Topological properties of trenched graphs

Michał Kowalewski Based on joint work with Piotr Oprocha

AGH University of Krakow Faculty of Applied Mathematics kowalewski@agh.edu.pl

Conference on Generic Structures, 23.10 - 28.10.2023, Będlewo

Michał Kowalewski (AGH)

Warsaw circle

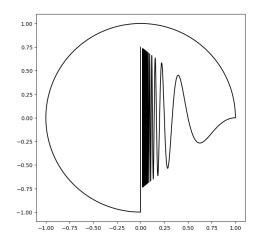


Figure: Warsaw Circle

< <p>I I

• 승 . < ∃ >

900

€

Quasi-graphs¹

AG H

Definition

We say continuum X is *quasi-graph* if and only if there is a graph G and finite set $\{L_1, ..., L_n\}$ of pairwise disjoint oscillatory quasi-arcs in X such that:

In for each $0 \le i \le n \ L_i \cap G = \{a_i\}$, where a_i is the endpoint of L_i ,

$$\ \, {} \ \, {} \ \, {} \ \, \omega(L_i)\subset {\it G}\cup\bigcup_{j=1}^{i-1}L_j \ \, {\rm for \ each} \ 0\leq i\leq n,$$

• if $\omega(L_i) \cap L_j \neq \emptyset$ for some $0 \le i, j \le n$, then $\omega(L_i) \supset L_j$

¹E. Shi J. Mai. "Structures of quasi-graphs and ω-limit sets of quasi-graph maps". In: *Trans. Amer. Math. Soc.* 369.1 (2017), pp. 139–165. ISSN: 0002-9947. DOI: 10.1090/tran/6627. URL: https://doi.org/10.1090/tran/6627. (B)

Michał Kowalewski (AGH)

Topological properties of trenched graphs

Warsaw circle as a quasi-graph

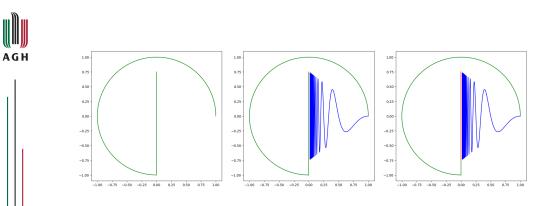


Figure: Construction of the Warsaw Circle as a quasi-graph

< □

Generalized sin(1/x)-type continua²

AG H

www.agh.edu.pl

Definition

A continuum X is a generalized sin(1/x)-type continuum if there exists a topological graph Y and a monotone map $\phi: X \to Y$ with following properties:

- () $\phi^{-1}(y)$ is nowhere dense in X for any $y \in Y$,
- (a) if Y_0 is a subcontinuum of $\phi^{-1}(y)$ and $\epsilon > 0$ then there exists an arc $[a,b] \subset Y$ such that $d_H(Y_0,\phi^{-1}([a,b])) < \epsilon$

Sets $\phi^{-1}(y)$ are called *fibers* of X. Nondegenerete fibers are called *trenches* of X.

²C. Mouron L. Hoehn. "Hierarchies of chaotic maps on continua". In: *Ergodic Theory Dynam. Systems* 34.6 (2014), pp. 1897–1913. ISSN: 0143-3857. DOI: 10.1017/etds.2013.32. URL: https://doi.org/10.1017/etds.2013.32.@ → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < = < < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E → < E →

Michał Kowalewski (AGH)

Topological properties of trenched graphs

Będlewo, 26.10.2023

Warsaw circle as generalized sin(1/x)-type continuum

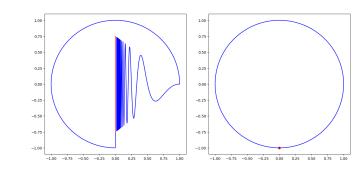


Figure: Warsaw Circle and its image under monotone mapping ϕ from definiton of $\sin(1/{\rm x}){\rm -type}$ continuum

AGH

Arc limiting a triod

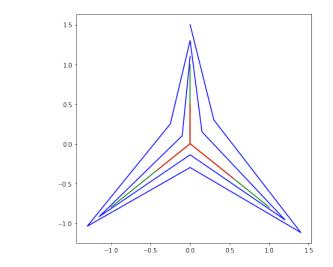


Figure: Quasi-arc with triod as the limit set.

AGH

Quasi-graph thats not a sin(1/x)-type continuum



Figure: A quasi-graph whose limit set is circle, but is not a generalized $\sin(1/x)$ -type continuum

Michał Kowalewski (AGH)

AGH

www.agh.edu.pl -

5990

Trenched graphs

AG H

Definition

We will call continuum X a *trenched graph* if there is a topological graph Y and monotone map $\phi: X \to Y$ with following properties:

- $\ \, \textcircled{} \quad \phi^{-1}(y) \text{ is nowhere dense in } X \text{ for all } y \in Y,$
- $\phi^{-1}(D)$ is dense in X, where $D = \{y \in Y \text{ such that } \phi^{-1}(y) \text{ is degenerate}\},$

As with the generalized sin(1/x)-type continua, we will call sets $\phi^{-1}(y)$ fibers of X. Similarly, nondegenerete fibers will be called *trenches* of X.

Definition

We say trenched graph has regular fibers if all fibers $\phi^{-1}(y)$ are either a singleton or a trenched graph. We say trenched graph is regular if any subcontinuum $Y \subset X$ is singleton or a trenched graph with regular fibers.

Sufficient conditon for being sin(1/x)-type continuum

Lemma

Let X be a quasi-graph. Then X is a regular trenched graph with mapping $\phi: X \to X/_{\sim}$, where relation \sim collapses connected components of limit sets and ϕ is a natural projection.

Theorem

Let $X = G \cup \bigcup_{j=1}^{n} L_j$ be a quasi-graph. Assume that for every connected component $\Lambda \subset \bigcup \omega(L_j)$ the following assertions hold:

- **1** There is a quasi-arc L in X such that $\omega(L) = \Lambda$ and
- **2** Continuum Λ is arc-like.

Then X is a generalized sin(1/x)-type continuum.

Sin(1/x)-type continuum with branching point in a trench

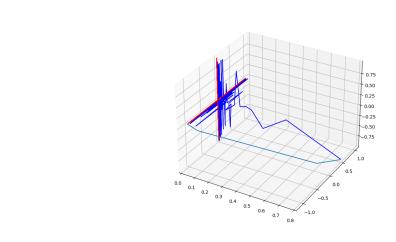


Figure: A quasi-graph which is generalized $\sin(1/x)$ -type continuum and contains 4-star as a trench

AGH

5990

Necessary conditon for being sin(1/x)-type continuum

AG H

Theorem

Let X be a quasi-graph that is a generalized sin(1/x) type continuum. Then for every connected component $\Lambda \subset \bigcup \omega(L_j)$ there is a quasi-arc $L \subset X$ such that $\omega(L) = \Lambda$

Set of trenches doesn't need to be closed

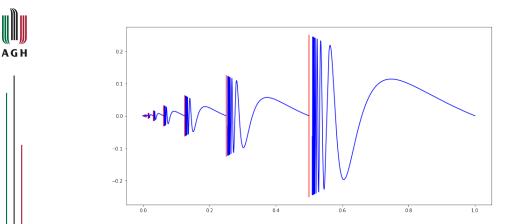


Figure: Generalized sin(1/x)-type continuum whose set of trenches is not closed

There can be infinite hierarchy of quasi-arcs

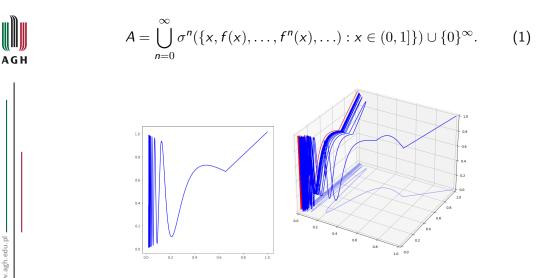
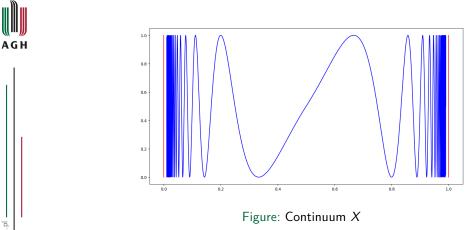


Figure: $f: (0,1] \rightarrow (0,1]$ and continuum of order 2

www.agh.edu.pl -

590

Double-sided sin(1/x)-continuum



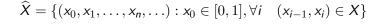
Michał Kowalewski (AGH)

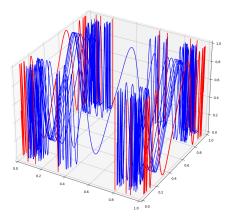
Będlewo, 26.10.2023

< <p>Image: Contract of the second se

⊇▶ ⊇

A strange sin(1/x)-type continuum





Topological properties of trenched graphs

Sufficient and necessary condition to be a quasi-graph.

AG H

We can prove that:

- \widehat{X} is a sin(1/x)-type continuum,
- ② Set of trenches of \widehat{X} is dense in \widehat{X} ,
- Every fiber is either a singleton or is homeomorphic to \widehat{X} ,
- Continuum \widehat{X} contains no arcs inside it,
- Continuum \widehat{X} is hereditarily decomposable.

Theorem

Let X be a trenched graph. Then X is a quasi-graph if and only if it is arcwise connected, regular and of finite order.