On generic topological embeddings

Andrzej Kucharski joint work with W. Kubiś and S. Turek

University of Silesia in Katowice

Conference on Generic Structures Będlewo 2023 Let κ be a regular cardinal and \mathfrak{K} be a full subcategory of a bigger category \mathfrak{L} such that the following compatibility conditions are satisfied.

- (L0) All \mathfrak{L} -arrows are epi.
- (L1) Every inverse sequence of length κ in \mathfrak{K} has the limit in \mathfrak{L} .
- (L2) Every \mathfrak{L} -object is the limit of an inverse sequence in \mathfrak{K} .
- (L3) For every inverse sequence \vec{x} in \mathfrak{K} with $K = \lim \vec{x}$ in \mathfrak{L} , for every \mathfrak{K} -object Y, for every \mathfrak{L} -arrow $f \colon K \to Y$ there exist $\alpha < \kappa$ and a \mathfrak{K} -arrow $f' \colon X_{\alpha} \to Y$ such that $f = f' \circ x_{\alpha}^{\infty}$.

 $\langle \mathfrak{K}, \mathfrak{L} \rangle$ is a free completion if (L0)-(L3) are satisfied.

R-generic

Now, an \mathfrak{L} -object U will be called \mathfrak{K} -generic if

(G1) $\mathfrak{L}(U, X) \neq \emptyset$ for every $X \in Obj(\mathfrak{K})$.

(G2) For every \mathfrak{K} -arrow $f: Y \to X$, for every \mathfrak{L} -arrow $g: U \to X$ there exists an \mathfrak{L} -arrow $h: U \to Y$ such that $f \circ h = g$.

The Cantor set $\{0,1\}^{\omega}$

Let \mathfrak{Fin} be a category of finite nonempty discrete spaces

as a full subcategory of the category

Comp of compact metric spaces and continuous surjections

- (G1) $\mathfrak{Comp}(\{0,1\}^{\omega}, X) \neq \emptyset$ for every $X \in \mathsf{Obj}(\mathfrak{Fin})$.
- (G2) For every \mathfrak{Fin} -arrow $f: Y \to X$, for every \mathfrak{Comp} -arrow $g: \{0,1\}^{\omega} \to X$ there exists an \mathfrak{Comp} -arrow $h: \{0,1\}^{\omega} \to Y$ such that $f \circ h = g$.

The Cantor set is the *fin*-generic object.

.

The Čech-Stone remainder ω^*

Let \mathfrak{Comp} be a category of compact metric spaces and continuous surjections

and

let \mathfrak{L} be a category of compact spaces of weight not greater than the continuum, with continuous surjections.

The following results of Parovičenko and Negrepontis imply that ω^* is \mathfrak{Comp} -generic.

(G1)Theorem (Parovičenko)

Every compact metric space is a continuous image of ω^*

(G2)Theorem (Negrepontis)

Assuming [CH], ω^* is compact Hausdorff space of weight ω_1 such that for every two continuous surjections $f: \omega^* \to X$ and $g: Y \to X$ with X and Y compact metric, there exists a continuous surjection $h: \omega^* \to Y$ such that $g \circ h = f$

A κ -Fraïssé sequence in \Re is an inverse sequence \vec{u} of regular length κ satisfying the following conditions:

- (U) For every object X of \mathfrak{K} there exists $\alpha < \kappa$ such that $\mathfrak{K}(U_{\alpha}, X) \neq \emptyset$.
- (A) For every $\alpha < \kappa$ and for every morphism $f: Y \to U_{\alpha}$, where $Y \in \text{Obj}(\mathfrak{K})$, there exist $\beta \ge \alpha$ and $g: U_{\beta} \to Y$ such that $u_{\alpha}^{\beta} = f \circ g$.

Categories of continuous mappings, \mathfrak{L}_{K} , \mathfrak{C}_{K}

Fix a compact 0-dimensional space K such that $w(K) \leq 2^{\omega}$. The objects of \mathfrak{L}_K are continuous mappings $f: K \to X$, where X is compact 0-dimensional with $w(X) \leq \omega_1$. Given two \mathfrak{L}_K -objects $f_0: K \to X_0$, $f_1: K \to X_1$, an \mathfrak{L}_K -arrow from f_1 to f_0 is a continuous surjection $q: X_1 \to X_0$ satisfying $q \circ f_1 = f_0$. The composition in \mathfrak{L}_K is the usual composition of mappings.

Let \mathfrak{C}_K be the full subcategory of \mathfrak{L}_K whose objects are those $f: K \to X$ with $w(X) \leq \omega$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Kubiś, K., Turek)

Assume that $\vec{\phi} = (\phi_{\alpha} : \alpha < \omega_1)$ is a continuous Fraïssé ω_1 -sequence in \mathfrak{C}_K , where $\phi_{\alpha} : K \to U_{\alpha}$ for each $\alpha < \omega_1$. Then

- (1) $\vec{u} = (U_{\alpha}: \alpha < \omega_1)$ is a Fraïssé sequence in the category \mathfrak{Comp} , whenever K is F-space.
- (2) If $w(K) \leq \omega_1$, then the limit map $\phi_{\omega_1} \colon K \to \lim \vec{u}$ has a left inverse *i.e.* there is $r \colon \lim \vec{u} \to K$ such that $r \circ \phi_{\omega_1} = \operatorname{id}_K$,
- (3) The image $\phi_{\omega_1}[K]$ is a nowhere dense P-set in $U_{\omega_1} = \lim \vec{u}$.

10 / 20

Corollary (Balcar, Frankiewicz, Mills)

Assuming CH, every compact 0-dimensional F-space of weight \mathfrak{c} can be embedded as a nowhere dense closed P-set in ω^* .

- Let K be a compact 0-dimensional F-space of weight c.
- Assuming CH, there exists a continuous ω_1 -Fraïssé sequence in \mathfrak{C}_K .
- $\vec{u} = (U_{\alpha}: \alpha < \omega_1)$ is a Fraissé sequence in the category \mathfrak{Comp} .
- $U_{\omega_1} = \lim \vec{u}$ is \mathfrak{Comp} -generic object.
- By a characterization of Negrepontis, U_{ω_1} is homeomorphic to ω^* .
- The image $\phi_{\omega_1}[K]$ is a nowhere dense closed P-set in ω^* .

Theorem (Kubiś, K., Turek)

Let $\eta: K \to \omega^*$ be an embedding such that $\eta[K]$ is a nowhere dense P-set of ω^* and K is a 0-dimensional compact space. Then $\eta: K \to \omega^*$ is \mathfrak{C}_K -generic.

Corollary (van Douwen, van Mill)

Assuming CH, every homeomorphism of nowhere dense closed P-sets in ω^* can be extended to an auto-homeomorphism of ω^* .

• By uniqueness of \mathfrak{C}_{K} -generic.

Corollary (van Douwen, van Mill)

Assuming CH, every nowhere dense closed P-set in ω^* is a retract of ω^* .

- Let $\eta \colon K \hookrightarrow \omega^*$ denote the inclusion map.
- We can represent η: K → ω^{*} as the limit of a sequence *u* = {φ_α : α < ω₁} in the category 𝔅_K.
- $\eta \colon K \hookrightarrow \omega^*$ is \mathfrak{C}_K -generic.
- \vec{u} is Fraïssé sequence in the category $\mathfrak{C}_{\mathcal{K}}$.
- There is a retraction $r: \omega^* \to K$.

Categories of κ -ultrametric spaces

Let γ be an ordinal. A γ - ultrametric (also called an "inverse γ -metric") on a set X is a function $u: X \times X \to \gamma + 1$ such that for all $x, y, z \in X$: (U1) $u(x, y) = \gamma$ if and only if x = y, (U2) $u(y, z) \ge \min\{u(y, x), u(x, z)\}$ (ultrametric triangle law), (U3) u(x, y) = u(y, x) (symmetry). Let κ, λ be infinite cardinals. We define a λ -ultrametric $u: \kappa^{\lambda} \times \kappa^{\lambda} \to \lambda + 1$ by the formula:

$$u(a,b) = \sup\{\alpha < \lambda \colon a \upharpoonright \alpha = b \upharpoonright \alpha\}$$

for $a, b \in \kappa^{\lambda}$.

If X is a discrete space, then there is a natural ultrametric $d: X \times X \to 2$ on X, namely d(a, b) = 1 iff a = b and d(a, b) = 0 iff $a \neq b$. Since $B_1(x) = \{x\}$ the set $\{x\}$ is open for any $x \in X$. A closed ball of radius α and center x is a set of the form

$$B_{\alpha}(x) = \{y \in X : u(x, y) \geq \alpha\},\$$

where $x \in X$ and $\alpha \in \gamma$. Each γ -ultrametric induces a topology whose base is the family of all closed balls of radius less then γ . We will call a space with this topology γ -ultrametric (or γ -metrizable). Let λ be a regular cardinal. Fix a λ -ultrametric space (K, u) of weight κ . The objects of \mathfrak{M}_K are uniformly continuous mappings $f: K \to X$, where (X, d) is a λ -ultrametric space of weight not greater than κ . Given two \mathfrak{M}_K -objects $f_0: K \to X_0$, $f_1: K \to X_1$, an \mathfrak{M}_K -arrow from f_1 to f_0 is a uniformly continuous surjection $q: X_1 \twoheadrightarrow X_0$ satisfying $q \circ f_1 = f_0$. The composition in \mathfrak{M}_K is the usual composition of mappings. Let \mathfrak{D}_K be the full subcategory of \mathfrak{M}_K whose objects are those $f: K \to X$ where X is a discrete space of cardinality not greater than κ .

We say that a function $f: K \to X$ is uniformly continuous if

$$\forall_{\epsilon \in \tau} \exists_{\delta \in \kappa} \forall_{a, b \in K} \ u(a, b) \geq \delta \Rightarrow d(f(a), f(b)) \geq \epsilon,$$

where $u: K \times K \rightarrow \kappa + 1$ and $d: X \times X \rightarrow \tau + 1$ are ultrametrics.

 λ is a regular cardinal.

Theorem (Kubiś, K., Turek)

Assume that $\vec{\phi} = (\phi_{\alpha} : \alpha < \lambda)$ is a continuous Fraïssé λ -sequence in \mathfrak{D}_{K} , where $\phi_{\alpha} : K \to U_{\alpha}$ for each $\alpha < \kappa$ and $\kappa^{<\lambda} = \kappa$. Then

- (1) $\vec{u} = (U_{\alpha}: \alpha < \lambda)$ is a Fraïssé sequence in the category of discrete spaces of cardinality not greater than κ and uniformly continuous surjection.
- (2) The limit map $\phi_{\lambda} \colon K \to \lim \vec{u}$ has a left inverse, i.e. there is $r \colon \lim \vec{u} \to K$ such that $r \circ \phi_{\lambda} = \operatorname{id}_{K}$.
- (3) The image $\phi_{\lambda}[K] \subseteq U_{\lambda} = \lim \vec{u}$ is uniformly nowhere dense.

We say that a subset A of a λ -ultrametric space (X, d) of weight κ is uniformly nowhere dense if for every $\alpha < \lambda$ there is $\beta > \alpha$ such that

$$\{B_{\beta}(a)\colon B_{\beta}(a)\cap A=\emptyset \ , a\in X \ , a\restriction \alpha=b\restriction \alpha\}\neq \emptyset$$

for every $b \in X$. Note that every uniformly nowhere dense subset of the ultrametric space κ^{λ} is nowhere dense.

 λ is a regular cardinal

Theorem (Kubiś, K., Turek)

Assuming $\kappa^{<\lambda} = \kappa$, there exists a continuous Fraïssé λ -sequence in \mathfrak{D}_{K} .

Corollary (Kubiś, K., Turek)

Assuming $\kappa^{<\lambda} = \kappa$, a λ -ultrametric space (K, u) of weight κ can be uniformly embedded into κ^{λ} as a uniformly nowhere dense subset.

Theorem (Kubiś, K., Turek)

If $\eta: K \to \kappa^{\lambda}$ is uniformly embedded such that $\eta[K]$ is uniformly nowhere dense in the λ -ultrametric space κ^{λ} , then $\eta: K \to \kappa^{\lambda}$ is \mathfrak{D}_{K} -generic.

 λ is a regular cardinal

Corollary (Kubiś, K., Turek)

Assuming $\kappa^{<\lambda} = \kappa$, every uniform homeomorphism of uniformly nowhere dense sets in κ^{λ} can be extended to a uniform auto-homeomorphism of κ^{λ} .

Corollary (Kubiś, K., Turek)

Assuming $\kappa^{<\lambda} = \kappa$, every uniformly nowhere dense set in κ^{λ} is a uniform retract of κ^{λ} .

Refereces

W. Kubiś, A. Kucharski and S. Turek, *On generic topological embeddings*, preprint, arXiv:2310.05043, (2023)

Thank You for Your attention!

Andrzej Kucharski

On generic topological embeddings

Będlewo 2023

Image: Image:

20 / 20