A generic Banach space and a generic operator

Ondřej Kurka

Czech Academy of Sciences

Conference on Generic Structures

Będlewo, October 23, 2023

The talk is based on a result from the paper

 M. Cúth, M. Doležal, M. Doucha and O. Kurka, *Polish spaces* of *Banach spaces*, Forum Math. Sigma 10, Paper No. e26, 28 p. (2022).

By an ε -isomorphic embedding we mean an injective linear operator $T: X \to Y$ such that $(1 - \varepsilon) ||x|| < ||Tx|| < (1 + \varepsilon) ||x||$ for $x \in X \setminus \{0\}$.

By an ε -isomorphic embedding we mean an injective linear operator $T: X \to Y$ such that $(1 - \varepsilon) ||x|| < ||Tx|| < (1 + \varepsilon) ||x||$ for $x \in X \setminus \{0\}$.

Definition

By the *Gurarii* space we mean the (up to isometry) only separable Banach space \mathbb{G} with the property that for every $\varepsilon > 0$, every finite-dimensional Banach spaces X and Y with $X \subseteq Y$ and every linear isometry $f : X \to \mathbb{G}$, there exists an ε -isomorphic embedding $g : Y \to \mathbb{G}$ extending f.

By an ε -isomorphic embedding we mean an injective linear operator $T: X \to Y$ such that $(1 - \varepsilon) ||x|| < ||Tx|| < (1 + \varepsilon) ||x||$ for $x \in X \setminus \{0\}$.

Definition

By the *Gurarii* space we mean the (up to isometry) only separable Banach space \mathbb{G} with the property that for every $\varepsilon > 0$, every finite-dimensional Banach spaces X and Y with $X \subseteq Y$ and every linear isometry $f : X \to \mathbb{G}$, there exists an ε -isomorphic embedding $g : Y \to \mathbb{G}$ extending f.

- first constructed by V. I. Gurarii (1966)
- uniqueness up to isometry proved by W. Lusky (1976)
- quite simple proof of uniqueness by W. Kubiś and S. Solecki (2013)
- G can be obtained as a Fraïssé limit (I. Ben Yaacov?, W. Kubiś?)

Let $\mathcal{P} \subseteq \mathbb{R}^{c_{00}}$ (resp. $\mathcal{B} \subseteq \mathbb{R}^{c_{00}}$) denote the set of all pseudonorms (resp. norms) on c_{00} equipped with the topology of pointwise convergence.

Let $\mathcal{P} \subseteq \mathbb{R}^{c_{00}}$ (resp. $\mathcal{B} \subseteq \mathbb{R}^{c_{00}}$) denote the set of all pseudonorms (resp. norms) on c_{00} equipped with the topology of pointwise convergence.

Fact

Both \mathcal{P} and \mathcal{B} are Polish spaces.

Let $\mathcal{P} \subseteq \mathbb{R}^{c_{00}}$ (resp. $\mathcal{B} \subseteq \mathbb{R}^{c_{00}}$) denote the set of all pseudonorms (resp. norms) on c_{00} equipped with the topology of pointwise convergence.

Fact

Both \mathcal{P} and \mathcal{B} are Polish spaces.

Definition

For $\mu \in \mathcal{P}$, let X_{μ} denote the completion of the quotient $(c_{00}, \mu)/N_{\mu}$, where $N_{\mu} = \{x \in c_{00} : \mu(x) = 0\}$. (If $\mu \in \mathcal{B}$, then X_{μ} is just the completion of (c_{00}, μ) .)

Let $\mathcal{P} \subseteq \mathbb{R}^{c_{00}}$ (resp. $\mathcal{B} \subseteq \mathbb{R}^{c_{00}}$) denote the set of all pseudonorms (resp. norms) on c_{00} equipped with the topology of pointwise convergence.

Fact

Both \mathcal{P} and \mathcal{B} are Polish spaces.

Definition

For $\mu \in \mathcal{P}$, let X_{μ} denote the completion of the quotient $(c_{00}, \mu)/N_{\mu}$, where $N_{\mu} = \{x \in c_{00} : \mu(x) = 0\}$. (If $\mu \in \mathcal{B}$, then X_{μ} is just the completion of (c_{00}, μ) .)

Remark

The motivation for introducing this coding of separable Banach spaces is that the "classical" coding due to B. Bossard is only a standard Borel spaces.

(This was partially resolved by G. Godefroy and J. Saint-Raymond.)

Theorem

The set of $\mu \in \mathcal{P}$ such that X_{μ} is isometric to \mathbb{G} is a dense G_{δ} -subset of \mathcal{P} .

Theorem

The set of $\mu \in \mathcal{P}$ such that X_{μ} is isometric to \mathbb{G} is a dense G_{δ} -subset of \mathcal{P} .

Other results from our paper:

- \bullet the isometry class of an inf.-dim. space is closed if and only if it is isometric to ℓ_2
- the isomorphism class of an inf.-dim. space is an F_{σ} -set if and only if it is isomorphic to ℓ_2
- the isometry class of $L_p, p \neq 2, p \neq \infty$, is a G_{δ} -complete set
- the isometry class of $\ell_p, p \neq 2, p \neq \infty$, and of c_0 is an $F_{\sigma\delta}$ -complete set

Theorem

The set of $\mu \in \mathcal{P}$ such that X_{μ} is isometric to \mathbb{G} is a dense G_{δ} -subset of \mathcal{P} .

Other results from our paper:

- \bullet the isometry class of an inf.-dim. space is closed if and only if it is isometric to ℓ_2
- the isomorphism class of an inf.-dim. space is an F_{σ} -set if and only if it is isomorphic to ℓ_2
- the isometry class of $L_p, p \neq 2, p \neq \infty$, is a G_{δ} -complete set
- the isometry class of $\ell_p, p \neq 2, p \neq \infty$, and of c_0 is an $F_{\sigma\delta}$ -complete set

Remark

The spaces whose isometry classes are G_{δ} -sets, so-called guarded Fraïssé spaces, are investigated in a forthcoming paper by M. Cúth, N. de Rancourt and M. Doucha.

A bounded linear operator T is called *non-expansive* if $||T|| \le 1$.

A bounded linear operator T is called *non-expansive* if $||T|| \le 1$.

Definition

Let X, Y be separable Banach spaces. A non-expansive operator $G: X \to Y$ is called a *Gurarii operator* if for any $\varepsilon > 0$, any non-expansive operator $T: A \to B$ between finite-dimensional Banach spaces, any subspaces $A_0 \subseteq A, B_0 \subseteq B$ with $T(A_0) \subseteq B_0$ and any isometric embeddings $i_0: A_0 \to X, j_0: B_0 \to Y$ with $G \circ i_0 = j_0 \circ T|_{A_0}$, there exist ε -isometric embeddings $i: A \to X$ and $j: B \to Y$ extending i_0 and j_0 such that $G \circ i = j \circ T$.

A bounded linear operator T is called *non-expansive* if $||T|| \le 1$.

Definition

Let X, Y be separable Banach spaces. A non-expansive operator $G: X \to Y$ is called a *Gurariĭ operator* if for any $\varepsilon > 0$, any non-expansive operator $T: A \to B$ between finite-dimensional Banach spaces, any subspaces $A_0 \subseteq A, B_0 \subseteq B$ with $T(A_0) \subseteq B_0$ and any isometric embeddings $i_0: A_0 \to X, j_0: B_0 \to Y$ with $G \circ i_0 = j_0 \circ T|_{A_0}$, there exist ε -isometric embeddings $i: A \to X$ and $j: B \to Y$ extending i_0 and j_0 such that $G \circ i = j \circ T$.

- constructed as a Fraïssé limit by J. Garbulińska-Węgrzyn and W. Kubiś (2015)
- they also proved that it is unique up to isometry
- T. Banakh and J. Garbulińska-Węgrzyn proved that it forms a dense G_δ-set in the space B(G) of non-expansive linear operators on G with the strong operator topology

Definition

Let $\mathfrak{O} \subseteq \mathfrak{P} \times \mathfrak{P}$ be the set of all pairs (μ, ν) of pseudonorms on c_{00} satisfying

 $\nu \leq \mu$.

Definition

Let $\mathfrak{O} \subseteq \mathfrak{P} \times \mathfrak{P}$ be the set of all pairs (μ, ν) of pseudonorms on c_{00} satisfying

 $\nu \leq \mu$.

Definition

For $(\mu, \nu) \in \mathbb{O}$, let $T_{\mu,\nu} : X_{\mu} \to X_{\nu}$ denote the continuous extension of the operator $x + N_{\mu} \mapsto x + N_{\nu}, x \in c_{00}$.

Definition

Let $\mathfrak{O} \subseteq \mathfrak{P} \times \mathfrak{P}$ be the set of all pairs (μ, ν) of pseudonorms on c_{00} satisfying

 $\nu \leq \mu$.

Definition

For $(\mu, \nu) \in \mathbb{O}$, let $T_{\mu,\nu} : X_{\mu} \to X_{\nu}$ denote the continuous extension of the operator $x + N_{\mu} \mapsto x + N_{\nu}, x \in c_{00}$.

Remark

A coding of all operators based on Bossard's approach was introduced by K. Beanland and D. Freeman. However, we do not consider the same class of objects, as our operators $T : X \to Y$ are non-expansive and fulfill $\overline{T(X)} = Y$.

Conjecture

The set of $(\mu, \nu) \in \mathbb{O}$ such that $T_{\mu,\nu}$ is a Gurariĭ operator is a dense G_{δ} -subset of \mathbb{O} .