On topological Ramsey spaces over and around Fraïssé limits

Dragan Mašulović ${ }^{1}$
(Joint work with Natasha Dobrinen ${ }^{2}$)

${ }^{1}$ Dept of Math and Inf, Faculty of Sciences, University of Novi Sad, Serbia ${ }^{2}$ Dept of Mathematics, University of Notre Dame, USA

Conference on Generic structures
Będlewo, 2023 Oct 27

Thanks

Science Fund of the Republic of Serbia

Supported by the Science Fund of the Republic of Serbia Grant No. 7750027 Set-theoretic, model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity - SMART

Thanks

Outline of the talk

1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

Next . . .

1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

Finite, infinite and very infinite Ramsey statements

$$
(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad \text { Finite Ramsey Theorem }
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
(\forall k)(\forall n)(\exists L) L & \longrightarrow(n)_{2}^{k} \quad \text { Finite Ramsey Theorem } \\
(\forall k)(\forall n) \omega & \longrightarrow(n)_{2}^{k}
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad$ Finite Ramsey Theorem
$(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad$ Finite Ramsey Theorem

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
&(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\hat{i} \text { compactness }
\end{array} \\
&(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem }
\end{array}
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
&(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\text { i compactness }
\end{array} \\
&(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \text { Finite Ramsey Theorem }
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
&(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\text { 介 compactness }
\end{array} \\
&(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem }
\end{array} \\
&(\forall k) \omega \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem }
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\text { 介 compactness }
\end{array} \\
(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\Uparrow
\end{array} \\
(\forall k) \omega \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem }
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
(\forall k)(\forall n)(\exists L) L & \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\text { 介 compactness }
\end{array} \\
(\forall k)(\forall n) \omega & \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\Uparrow
\end{array} \\
(\forall k) \omega & \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem } \\
\omega & \longrightarrow(\omega)_{2}^{\omega}
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
&(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\hat{y} \text { compactness }
\end{array} \\
&(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\Uparrow
\end{array} \\
&(\forall k) \omega \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem } \\
& \omega \longrightarrow(\omega)_{2}^{\omega} \quad \text { FALSE }
\end{aligned}
$$

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
&(\forall k)(\forall n)(\exists L) L \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\hat{\imath} \text { compactness }
\end{array} \\
&(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\Uparrow
\end{array} \\
&(\forall k) \omega \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem } \\
& \omega \longrightarrow(\omega)_{2}^{\omega} \quad \text { FALSE }
\end{aligned}
$$

- Easy construction of a bad coloring (AC)

Finite, infinite and very infinite Ramsey statements

$$
\begin{aligned}
(\forall k)(\forall n)(\exists L) L & \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\text { 介 compactness }
\end{array} \\
(\forall k)(\forall n) \omega & \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\Uparrow
\end{array} \\
(\forall k) \omega & \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem } \\
\omega & \longrightarrow(\omega)_{2}^{\omega} \quad \text { FALSE }
\end{aligned}
$$

- Easy construction of a bad coloring (AC)
- Problem: Too many colorings of $\omega^{[\infty]}$

Finite, infinite and very infinite Ramsey statements

$$
\left.\begin{array}{rl}
(\forall k)(\forall n)(\exists L) L & \longrightarrow(n)_{2}^{k} \quad \begin{array}{c}
\text { Finite Ramsey Theorem } \\
\hat{y} \text { compactness }
\end{array} \\
(\forall k)(\forall n) \omega \longrightarrow(n)_{2}^{k} \quad \begin{array}{l}
\text { Finite Ramsey Theorem } \\
\Uparrow
\end{array} \\
(\forall k) \omega & \longrightarrow(\omega)_{2}^{k} \quad \text { Infinite Ramsey Theorem }
\end{array}\right]=(\omega)_{2}^{\omega} \quad \text { FALSE }
$$

- Easy construction of a bad coloring (AC)
- Problem: Too many colorings of $\omega^{[\infty]}$
- Idea: Consider special colorings!

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

∞-dimensional Ramsey theory

$$
\omega \rightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!
A set $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey if there is an $X \in \omega^{[\infty]}$ such that:

- either $X^{[\infty]} \subseteq \mathcal{A}$
- or $X^{[\infty]} \cap \mathcal{A}=\varnothing$.

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!
A set $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey if there is an $X \in \omega^{[\infty]}$ such that:

- either $X^{[\infty]} \subseteq \mathcal{A}$
- or $X^{[\infty]} \cap \mathcal{A}=\varnothing$.

Early results:

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!
A set $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey if there is an $X \in \omega^{[\infty]}$ such that:

- either $X^{[\infty]} \subseteq \mathcal{A}$
- or $X^{[\infty]} \cap \mathcal{A}=\varnothing$.

Early results:

- Nash-Williams 1965: Open sets are Ramsey

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!
A set $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey if there is an $X \in \omega^{[\infty]}$ such that:

- either $X^{[\infty]} \subseteq \mathcal{A}$
- or $X^{[\infty]} \cap \mathcal{A}=\varnothing$.

Early results:

- Nash-Williams 1965: Open sets are Ramsey
- Galvin, Prirky 1973: Borel sets are Ramsey

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!
A set $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey if there is an $X \in \omega^{[\infty]}$ such that:

- either $X^{[\infty]} \subseteq \mathcal{A}$
- or $X^{[\infty]} \cap \mathcal{A}=\varnothing$.

Early results:

- Nash-Williams 1965: Open sets are Ramsey
- Galvin, Prirky 1973: Borel sets are Ramsey
- Silver 1970: Analytic sets are Ramsey

∞-dimensional Ramsey theory

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Topology tames the wilderness!
A set $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey if there is an $X \in \omega^{[\infty]}$ such that:

- either $X^{[\infty]} \subseteq \mathcal{A}$
- or $X^{[\infty]} \cap \mathcal{A}=\varnothing$.

Early results:

- Nash-Williams 1965: Open sets are Ramsey
- Galvin, Prirky 1973: Borel sets are Ramsey
- Silver 1970: Analytic sets are Ramsey

Baire hunt

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Overall Beauty of Mathematics \Rightarrow Baire sets should be Ramsey

Baire hunt

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Overall Beauty of Mathematics \Rightarrow Baire sets should be Ramsey
... Right?

Baire hunt

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Overall Beauty of Mathematics \Rightarrow Baire sets should be Ramsey
... Right?
Galvin, Prirky 1973: construction of a bad Baire coloring (AC)

Baire hunt

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Overall Beauty of Mathematics \Rightarrow Baire sets should be Ramsey
... Right?
Galvin, Prirky 1973: construction of a bad Baire coloring (AC)
Ellentuck 1974:

- motivation: simplify Silver's proof

Baire hunt

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Overall Beauty of Mathematics \Rightarrow Baire sets should be Ramsey
... Right?
Galvin, Prirky 1973: construction of a bad Baire coloring (AC)
Ellentuck 1974:

- motivation: simplify Silver's proof
- metric topology is not rich enough

Baire hunt

$$
\omega \longrightarrow(\omega)_{2}^{\omega} \quad ?
$$

Overall Beauty of Mathematics \Rightarrow Baire sets should be Ramsey
... Right?
Galvin, Prirky 1973: construction of a bad Baire coloring (AC)
Ellentuck 1974:

- motivation: simplify Silver's proof
- metric topology is not rich enough
- Refine the topology!

Baire hunt

Topologize $\omega^{[\infty]}$ by the exponential $=$ Vietoris $=$ Ellentuck topology
Basic open sets $\left(a \in \omega^{[<\infty]}, B \in \omega^{[\infty]}\right)$:

$$
[a, B]=\left\{X \in \omega^{[\infty]}: a \sqsubset X \wedge X \subseteq a \cup B\right\}
$$

Baire hunt
Topologize $\omega^{[\infty]}$ by the exponential $=$ Vietoris $=$ Ellentuck topology
Basic open sets ($\left.a \in \omega^{[<\infty]}, B \in \omega^{[\infty]}\right)$:

$$
[a, B]=\left\{X \in \omega^{[\infty]}: a \sqsubset X \wedge X \subseteq a \cup B\right\}
$$

Baire hunt

Topologize $\omega^{[\infty]}$ by the exponential $=$ Vietoris $=$ Ellentuck topology
Basic open sets $\left(a \in \omega^{[<\infty]}, B \in \omega^{[\infty]}\right)$:

$$
[a, B]=\left\{X \in \omega^{[\infty]}: a \sqsubset X \wedge X \subseteq a \cup B\right\}
$$

Theorem (Ellentuck 1974) Every Baire $\mathcal{A} \subseteq \omega^{[\infty]}$ is Ramsey w.r.t. the exponential topology on $\omega^{[\infty]}$.

Baire hunt

With $\mathcal{X} \subseteq \omega^{[\infty]}$:

- \mathcal{X} is completely Ramsey if for every basic open set $[a, B]$ there is a $C \in[a, B]$ such that either $[a, C] \subseteq \mathcal{X}$ or $[a, C] \cap \mathcal{X}=\varnothing$;
- \mathcal{X} is Ramsey null if for every basic open set $[a, B]$ there is a $C \in[a, B]$ such that $[a, C] \cap \mathcal{X}=\varnothing$.

Theorem (\Leftrightarrow Ellentuck) Consider $\omega^{[\infty]}$ with the exponential topology and let $\mathcal{X} \subseteq \omega^{[\infty]}$.
(a) \mathcal{X} is Baire iff it is completely Ramsey;
(b) \mathcal{X} is meager iff it is Ramsey null.

Topological Ramsey spaces

Topological Ramsey space \rightarrow abstraction of the Ellentuck space

Principal references:
1 T. J. Carlson. Some unifying principles in Ramsey theory. Discrete mathematics 68 (1988), 117-169.

2 S. Todorcevic. Introduction to Ramsey spaces. Annals of Mathematics Studies 174, Princeton University Press 2010.

Topological Ramsey spaces

An approximation space is a triple $(\mathcal{R}, \leqslant, r)$ where:

- \leqslant is a preorder on \mathcal{R},
- $r: \omega \times \mathcal{R} \rightarrow \mathcal{A R}\left(\right.$ written $r_{n}(A)$ instead of $\left.r(n, A)\right)$.

A1. (Sequencing)
$1 r_{0}(A)=\varnothing$ for all A;
2 if $A \neq B$ then $r_{n}(A) \neq r_{n}(B)$ for some n;
3 if $r_{n}(A)=r_{m}(B)$ then $m=n$ and $r_{k}(A)=r_{k}(B)$ for all $k<n$.
For $a \in \mathcal{A R}$ and $B \in \mathcal{R}$:

$$
[a, B]=\left\{X \in \mathcal{R}: X \leqslant B \wedge(\exists n) r_{n}(X)=a\right\}
$$

These are basic open sets of the Ellentuck topology on \mathcal{R}.

Topological Ramsey spaces

With $\mathcal{X} \subseteq \mathcal{R}$:

- \mathcal{X} is (completely) Ramsey if for every basic open set $[a, B] \neq \varnothing$ there is a $C \in[a, B]$ such that either $[a, C] \subseteq \mathcal{X}$ or $[a, C] \cap \mathcal{X}=\varnothing$;
- \mathcal{X} is Ramsey null if for every basic open set $[a, B] \neq \varnothing$ there is a $C \in[a, B]$ such that $[a, C] \cap \mathcal{X}=\varnothing$.

Definition. An approximation space $(\mathcal{R}, \leqslant, r)$ is a topological Ramsey space if every Baire set is Ramsey and every meager set is Ramsey null w.r.t. the Ellentuck topology.

Topological Ramsey spaces

A1. (Sequencing)
$1 r_{0}(A)=\varnothing$ for all A;
2 if $A \neq B$ then $r_{n}(A) \neq r_{n}(B)$ for some n;
3 if $r_{n}(A)=r_{m}(B)$ then $m=n$ and $r_{k}(A)=r_{k}(B)$ for all $k<n$.

Topological Ramsey spaces

A1. (Sequencing) ...
A2. (Finitization) There is a quasiordering $\leqslant_{\text {fin }}$ on $\mathcal{A R}$ such that:
$1\{a \in \mathcal{A R}: a \leqslant$ fin $b\}$ is finite for all $b \in \mathcal{A R}$;
$2 A \leqslant B$ if $(\forall n)(\exists m) r_{n}(A) \leqslant$ fin $r_{m}(B)$;
3 for all $a, b, c \in \mathcal{A R}$, if $a \sqsubset b$ and $b \leqslant_{\mathrm{fin}} c$ then there is a $d \in \mathcal{A R}$ such that $a \leqslant$ fin $d \sqsubset c$.

Topological Ramsey spaces

A1. (Sequencing) ...
A2. (Finitization) ...
A3. (Amalgamation) Let $a \in \mathcal{A R}, B \in \mathcal{R}$ and let $\operatorname{depth}_{B}(a)=n$.
$1[a, C] \neq \varnothing$ for all $C \in[n, B]$.
2. If $C \in \mathcal{R}$ such that $C \leqslant B$ and $[a, C] \neq \varnothing$ then there is a $D \in[n, B]$ such that $\varnothing \neq[a, D] \subseteq[a, C]$.

Topological Ramsey spaces

A1. (Sequencing) ...
A2. (Finitization) ...
A3. (Amalgamation) ...
A4. (Pigeonhole) Let $a \in \mathcal{A R}_{k}$, let $B \in \mathcal{R}$ such that $\operatorname{depth}_{B}(a)=n$ and let $\mathcal{O} \subseteq \mathcal{A R}_{k+1}$. Then there is a $C \in[n, B]$ such that $r_{k+1}[a, C] \subseteq \mathcal{O}$ or $r_{k+1}[a, C] \subseteq \mathcal{O}^{c}$.

Topological Ramsey spaces

A1. (Sequencing) ...
A2. (Finitization) ...
A3. (Amalgamation) ...
A4. (Pigeonhole) ...

Abstract Ellentuck Theorem (Carlson 1988) Let $(\mathcal{R}, \leqslant, r)$ be an approximation space closed in the metric topology. If ($\mathcal{R}, \leqslant, r$) satisfies $\mathbf{A 1} \mathbf{- A 4}$ then it is a top Ramsey space.

Topological Ramsey spaces

A1. (Sequencing) ...
A2. (Finitization) ...
A3. (Amalgamation) ...
A4. (Pigeonhole) ...

Abstract Ellentuck Theorem (Carlson 1988) Let $(\mathcal{R}, \leqslant, r)$ be an approximation space closed in the metric topology. If $(\mathcal{R}, \leqslant, r)$ satisfies $\mathbf{A 1} \mathbf{- A} 4$ then it is a top Ramsey space.

Spectacular applications in Ramsey theory, set theory (forcing), Banach spaces, ...

Structural Ramsey theory

Generalize Ramsey-type results to first-order relational structures

Structural Ramsey theory

Generalize Ramsey-type results to first-order relational structures

Finite Ramsey Theorem \rightarrow Ramsey theory for classes of finite rel structures

Structural Ramsey theory

Generalize Ramsey-type results to first-order relational structures

Finite Ramsey Theorem \rightarrow Ramsey theory for classes of finite rel structures

Infinite Ramsey Theorem \rightarrow Big Ramsey degrees in countable rel structures

Structural Ramsey theory

Generalize Ramsey-type results to first-order relational structures

Finite Ramsey Theorem \rightarrow Ramsey theory for classes of finite rel structures

Infinite Ramsey Theorem $\rightarrow \quad \begin{aligned} & \text { Big Ramsey degrees in } \\ & \text { countable rel structures }\end{aligned}$

Ellentuck Theorem
\rightarrow ?
(∞-dim struct Ramsey th?)

Towards ∞-dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

Towards ∞-dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

For a Fraïssé limit \mathcal{F} :
Goal 1: Construct a topological Ramsey space $\mathcal{R} \subseteq\binom{\mathcal{F}}{\mathcal{F}}$.

Towards ∞-dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

For a Fraïssé limit \mathcal{F} :
Goal 1: Construct a topological Ramsey space $\mathcal{R} \subseteq\binom{\mathcal{F}}{\mathcal{F}}$.
Goal 2: Infer properties of \mathcal{F} using the machinery of topological Ramsey spaces.

Towards ∞-dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

For a Fraïssé limit \mathcal{F} :
Goal 1: Construct a topological Ramsey space $\mathcal{R} \subseteq\binom{\mathcal{F}}{\mathcal{F}}$.
Goal 2: Infer properties of \mathcal{F} using the machinery of topological Ramsey spaces.

Next . . .

1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

Categorical setup

Do as much as possible in the language of category theory.
axiomatic approach \rightarrow general notions
$\begin{aligned} \text { categorical approach } & \rightarrow \text { general constructions } \\ & \rightarrow \text { automatic dualization }\end{aligned}$

Categorical setup

Do as much as possible in the language of category theory.

$$
\begin{aligned}
\text { axiomatic approach } & \rightarrow \text { general notions } \\
\text { categorical approach } & \rightarrow \text { general constructions } \\
& \rightarrow \text { automatic dualization }
\end{aligned}
$$

Unfortunately, we shall have to scale back to the language of relational structures very quickly.

Categorical setup

Assumptions on C :

- C is locally small: all $\operatorname{hom}_{C}(A, B)$ are sets;
- C is directed: for all A, B there is a C such that $A \rightarrow C \leftarrow B$;
- morphisms are mono: if $f \cdot g=f \cdot h$ then $g=h$.
- Ramsey property: for all A, B there is a C such that $C \longrightarrow(B)_{2}^{A}$.
- $C \longrightarrow(B)_{2}^{A}$: for every coloring $\chi: \operatorname{hom}_{C}(A, C) \rightarrow\{0,1\}$ there is a $w \in \operatorname{hom}_{\mathrm{C}}(B, C)$ s.t. $\left|w \cdot \operatorname{hom}_{\mathrm{C}}(A, B)\right|=1$.

Categorical setup

A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- the skeleton S of C has at most countably many objects;
- for every $S \in \mathrm{Ob}(\mathrm{S})$ there are only finitely many morphisms in S whose codomain is S.

Categorical setup

A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- the skeleton S of C has at most countably many objects;
- for every $S \in \mathrm{Ob}(\mathrm{S})$ there are only finitely many morphisms in S whose codomain is S.

Categorical setup

A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- the skeleton S of C has at most countably many objects;
- for every $S \in \mathrm{Ob}(\mathrm{S})$ there are only finitely many morphisms in S whose codomain is S.

Categorical setup

A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- the skeleton S of C has at most countably many objects;
- for every $S \in \mathrm{Ob}(\mathrm{S})$ there are only finitely many morphisms in S whose codomain is S.

								0	0	0
0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

Categorical setup

A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- the skeleton S of C has at most countably many objects;
- for every $S \in \mathrm{Ob}(\mathrm{S})$ there are only finitely many morphisms in S whose codomain is S.

Categorical setup

A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- the skeleton S of C has at most countably many objects;
- for every $S \in \mathrm{Ob}(\mathrm{S})$ there are only finitely many morphisms in S whose codomain is S.

A category is skeletal if it coincides with its skeleton.
NB. A category and its skeleton have the same Ramsey-related properties (def's invariant under isomorphism)

Construction 1: Pincushions

Generalizes

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Construction 1: Pincushions

Generalizes

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Setup:

- A skeletal Ramsey category of finite objects C

Construction 1: Pincushions

Generalizes

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Setup:

- A Fraïssé sequence $Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots$ in C

$$
Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots \quad \begin{gathered}
C \\
\hline
\end{gathered}
$$

Construction 1: Pincushions

Generalizes

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Setup:

- Its Fraïssé limit Z_{*} in some ambient category $\sigma \mathrm{C}$ together with $\zeta_{n}^{*}: Z_{n} \rightarrow Z_{*}, n \in \mathbb{N}$

Construction 1: Pincushions

- $\mathcal{R}=\left\{\right.$ all sequences of morphisms $\left.\left(a_{i}: Z_{i} \rightarrow Z_{*}\right)_{i \in \mathbb{N}}\right\}$

- $r_{n}\left(\left(a_{i}\right)_{i \in \mathbb{N}}\right)=\left(a_{1}, \ldots, a_{n}\right)$

$$
x_{n}: Z_{n} \rightarrow Z_{\xi(n)} \text { s.t. } a_{k}=b_{\xi(k)} \cdot x_{k}
$$

Construction 1: Pincushions

Theorem. $(\mathcal{R}, \leqslant, r)$ is a topological Ramsey space.
Proof. Verify A1-A4.

Construction 1: Pincushions

Theorem. $(\mathcal{R}, \leqslant, r)$ is a topological Ramsey space.
Proof. Verify A1-A4.
What makes us happy:
1 The construction is general and dualizes
2 Convenient setup for the general canonization theorem à la Pudlák-Rödl (and its dual)

Construction 1: Pincushions

Theorem. $(\mathcal{R}, \leqslant, r)$ is a topological Ramsey space.
Proof. Verify A1-A4.
What makes us happy:
1 The construction is general and dualizes
2 Convenient setup for the general canonization theorem à la Pudlák-Rödl (and its dual)

What makes us unhappy:

1 Not clear how pincushions relate to "copies of Z_{*} in Z_{*} "
2 Too big: many pincushions encode the same "copy of Z_{*} "

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Idea. Take any $\left(a_{i}\right)_{i \in \mathbb{N}} \in \mathcal{R}$:

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Idea. Take any $\left(a_{i}\right)_{i \in \mathbb{N}} \in \mathcal{R}$:

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Idea. Take any $\left(a_{i}\right)_{i \in \mathbb{N}} \in \mathcal{R}$:

$$
\begin{array}{ccccc}
Z_{1} & \stackrel{\zeta_{1}^{2}}{\longrightarrow} Z_{2} & \stackrel{\zeta_{2}^{3}}{\longleftrightarrow} & Z_{3} & \stackrel{\zeta_{3}^{4}}{\longrightarrow}
\end{array} \cdots
$$

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Idea. Take any $\left(a_{i}\right)_{i \in \mathbb{N}} \in \mathcal{R}$:

$$
\begin{aligned}
& Z_{1} \stackrel{\zeta_{1}^{2}}{\longleftrightarrow} Z_{2} \stackrel{\zeta_{2}^{3}}{\longleftrightarrow} Z_{3} \stackrel{\zeta_{3}^{4}}{\longleftrightarrow} \cdots
\end{aligned}
$$

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Idea. Take any $\left(a_{i}\right)_{i \in \mathbb{N}} \in \mathcal{R}$:

$$
\begin{aligned}
& Z_{1} \stackrel{\zeta_{1}^{2}}{\longleftrightarrow} Z_{2} \stackrel{\zeta_{2}^{3}}{\longleftrightarrow} Z_{3} \stackrel{\zeta_{3}^{4}}{\longrightarrow} \cdots \leadsto m Z_{*}
\end{aligned}
$$

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Idea. Take any $\left(a_{i}\right)_{i \in \mathbb{N}} \in \mathcal{R}$:

$$
\begin{aligned}
& Z_{1} \stackrel{\zeta_{1}^{2}}{\longrightarrow} Z_{2} \stackrel{\zeta_{2}^{3}}{\longrightarrow} Z_{3} \stackrel{\zeta_{3}^{4}}{\longrightarrow} \cdots \sim \sim Z_{*}
\end{aligned}
$$

A_{*} is a standard colimit of $A_{1} \xrightarrow{\alpha_{1}^{2}} A_{2} \xrightarrow{\alpha_{2}^{3}} A_{3} \xrightarrow{\alpha_{3}^{4}} \cdots$
Write $A_{*}=\Theta\left(\left(a_{i}\right)_{i \in \mathbb{N}}\right)$

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Implementation.

- A skeletal Ramsey category C of finite relational structures and embeddings

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Implementation.

- A Fraïssé sequence $Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots$ in C

$$
Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots \quad \mathrm{C}
$$

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Implementation.

- ... which has the Hrushovski property (to be def'd soon!)

$$
Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots
$$

Construction 2: Distinguished copies

In a category of finite relational structures and embeddings refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of Z_{*}

Implementation.

- ... and comes with a Fraïssé limit Z_{*} together with

$$
\zeta_{n}^{*}: Z_{n} \rightarrow Z_{*}, n \in \mathbb{N}
$$

Hrushovski property (EPPA)

- Let C be a category, A, B objects of C and $\eta \in \operatorname{hom}_{\mathrm{C}}(A, B)$. (η, B) is a Hrushovski pair for A if

- A sequence $Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots$ has the Hrushovski property if $\left(\zeta_{n}^{n+1}, Z_{n+1}\right)$ is a Hrushovski pair for Z_{n} for all n.

Hrushovski property (EPPA)

- Let C be a category, A, B objects of C and $\eta \in \operatorname{hom}_{\mathrm{C}}(A, B)$. (η, B) is a Hrushovski pair for A if

- A sequence $Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots$ has the Hrushovski property if $\left(\zeta_{n}^{n+1}, Z_{n+1}\right)$ is a Hrushovski pair for Z_{n} for all n.

Lemma. If $Z_{1} \xrightarrow{\zeta_{1}^{2}} Z_{2} \xrightarrow{\zeta_{2}^{3}} Z_{3} \xrightarrow{\zeta_{3}^{4}} \cdots$ is universal for C and has the Hrushovski property then it is a Fraïssé sequence in C . Consequently, its colimit Z_{*} is ultrahomogeneous for C .

Construction 2: Distinguished copies

- $\overline{\mathcal{R}}=\{\Theta(a): a \in \mathcal{R}\}$
- \preccurlyeq and \bar{r} defined somehow (technical!)

Theorem. $(\overline{\mathcal{R}}, \preccurlyeq, \bar{r})$ is a topological Ramsey space.

Construction 2: Distinguished copies

- $\overline{\mathcal{R}}=\{\Theta(a): a \in \mathcal{R}\}$
- \preccurlyeq and \bar{r} defined somehow (technical!)

Theorem. $(\overline{\mathcal{R}}, \preccurlyeq, \bar{r})$ is a topological Ramsey space.
Proof strategy. Transport the structure from \mathcal{R} to $\overline{\mathcal{R}}$

Construction 2: Distinguished copies

- $\overline{\mathcal{R}}=\{\Theta(\mathrm{a}): \mathrm{a} \in \mathcal{R}\}$
- \preccurlyeq and \bar{r} defined somehow (technical!)

Theorem. $(\overline{\mathcal{R}}, \preccurlyeq, \bar{r})$ is a topological Ramsey space.
Proof strategy. Transport the structure from \mathcal{R} to $\overline{\mathcal{R}}$
$1(\mathcal{R}, \preccurlyeq, r),\left(\mathcal{R}^{\prime}, \preccurlyeq^{\prime}, r^{\prime}\right) \ldots$ approximation spaces
$2 \varphi: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ is a homomorphism if $\varphi\left([n, A]_{\mathcal{R}}\right)=[n, \varphi(A)]_{\mathcal{R}^{\prime}}$
3 Lemma (Carslon). If \mathcal{R} is a top Ram spc and $\varphi: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ a surjective homomorphism then \mathcal{R}^{\prime} is also a top Ram spc.
4Θ is obviously surjective.
5 Hrushovski property $\Rightarrow \Theta$ is a homomorphism

Construction 2: Distinguished copies

- $\overline{\mathcal{R}}=\{\Theta(\mathrm{a}): \mathrm{a} \in \mathcal{R}\}$
- \preccurlyeq and \bar{r} defined somehow (technical!)

Theorem. $(\overline{\mathcal{R}}, \preccurlyeq, \bar{r})$ is a topological Ramsey space.
What makes us happy:
1 Elements of $\overline{\mathcal{R}}$ are structures isomorphic to Z_{*}

Construction 2: Distinguished copies

- $\overline{\mathcal{R}}=\{\Theta(\mathrm{a}): \mathrm{a} \in \mathcal{R}\}$
- \preccurlyeq and \bar{r} defined somehow (technical!)

Theorem. $(\overline{\mathcal{R}}, \preccurlyeq, \bar{r})$ is a topological Ramsey space.
What makes us happy:
1 Elements of $\overline{\mathcal{R}}$ are structures isomorphic to Z_{*}

What makes us unhappy:
1 Still too big
$2 \overline{\mathcal{R}} \cap\binom{Z_{*}}{Z_{*}}=\varnothing$

Construction 3: Dense copies

Construction 3: Dense copies

$\mathcal{F} \ldots$ a Fraïssé limit w/ SAP age
$\bar{a} \ldots$ a tuple in F^{n}
$p=p(x / \bar{a}) \ldots$ a qf 1-type
$\beta_{p}=\left\{b \in F: \operatorname{qftp}_{\mathcal{F}}(b / \bar{a})=p\right\}$
Enumerate all nonempty β_{p} 's as
 $\beta_{1}, \beta_{2}, \beta_{3}, \ldots$

Fact. The β_{i} 's are basic open sets of a topology on F, call it $\tau^{\mathcal{F}}$.
Example. $\tau^{\mathbb{Q}}$ is the usual interval topology on \mathbb{Q}.

Construction 3: Dense copies

$\mathcal{F} \ldots$ a Fraïssé limit w/ SAP age
$\tau^{\mathcal{F}} \ldots$ topology generated by β_{i} 's
Def. $D \subseteq F$ is a dense copy of \mathcal{F} if D is dense w.r.t. $\tau^{\mathcal{F}}$. $\mathcal{D}^{\mathcal{F}}$ all dense copies of \mathcal{F}.

Lemma. $\langle D\rangle_{\mathcal{F}} \cong \mathcal{F}$ for all $D \in \mathcal{D}^{\mathcal{F}}$.
Nonexample.

Construction 3: Dense copies

$\mathcal{F} \ldots$ a Fraïssé limit w/ SAP age
Enumerate F as $v_{1}<v_{2}<v_{3}<\ldots$

- $\mathcal{R}^{\mathcal{F}}$ is the set of all infinite subsets of $A \subseteq F$ such that

$$
A=\{\underbrace{a_{1}^{1}}_{A(1)}<\underbrace{a_{1}^{2}<a_{2}^{2}}_{A(2)}<\ldots<\underbrace{a_{1}^{n}<a_{2}^{n}<\ldots<a_{n}^{n}}_{A(n)}<\ldots\}
$$

and $a_{m}^{n} \in \beta_{m}$ for all $m, n \in \mathbb{N}$ with $m \leqslant n$.

- $r_{n}^{\mathcal{F}}(A)=(A(1), A(2), \ldots, A(n))$
- $A \sqsubseteq^{\mathcal{F}} B$ if there are $n_{1}<n_{2}<n_{3}<\ldots$ s.t. $A(i) \sqsubseteq B\left(n_{i}\right)$.

Construction 3: Dense copies

Theorem. $\left(\mathcal{R}^{\mathcal{F}}, \sqsubseteq^{\mathcal{F}}, r^{\mathcal{F}}\right)$ is a topological Ramsey space.
Proof. Verify A1-A4.

Construction 3: Dense copies

Theorem. $\left(\mathcal{R}^{\mathcal{F}}, \sqsubseteq^{\mathcal{F}}, r^{\mathcal{F}}\right)$ is a topological Ramsey space.
Proof. Verify A1-A4.
What makes us happy:
We finally have a topological Ramsey space of copies of \mathcal{F} !

Construction 3: Dense copies

Theorem. $\left(\mathcal{R}^{\mathcal{F}}, \sqsubseteq^{\mathcal{F}}, r^{\mathcal{F}}\right)$ is a topological Ramsey space.
Proof. Verify A1-A4.
What makes us happy:
We finally have a topological Ramsey space of copies of \mathcal{F} !

What makes us unhappy:

Lemma. Assume that there are $i \neq j$ s.t. $\beta_{i} \cap \beta_{j}=\varnothing$.
(NB: this is usually the case; fails for structures like $(\mathbb{N},=)$).
Then $\mathcal{R}^{\mathcal{F}}$ is nowhere dense in $\mathcal{D}^{\mathcal{F}}$.

Next . . .

1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

Concluding meditations

construction 1: Too big

Construction 2: Too big

Construction 3: too small

Concluding meditations

Construction 1: Too big

Construction 2: Too big
Still missing: Just the right one!
Construction 3:
Too small

Concluding meditations

Topological Ramsey spaces - modeled after the Ellentuck space

Concluding meditations

Topological Ramsey spaces - modeled after the Ellentuck space

- objects identified with sequences of finite approximations;

Concluding meditations

Topological Ramsey spaces - modeled after the Ellentuck space

- objects identified with sequences of finite approximations;
- all nth approximations are required to be isomorphic.

Concluding meditations

Topological Ramsey spaces - modeled after the Ellentuck space

- objects identified with sequences of finite approximations;
- all nth approximations are required to be isomorphic.

Concluding meditations

Topological Ramsey spaces - modeled after the Ellentuck space

- objects identified with sequences of finite approximations;
- all nth approximations are required to be isomorphic.

To fully understand ∞-dimensional structural Ramsey theory we need a different theory of topological Ramsey spaces!

