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Finite, infinite and very infinite Ramsey statements

(∀k)(∀n)(∃L) L −→ (n)k2 Finite Ramsey Theorem

⇕ compactness
(∀k)(∀n) ω −→ (n)k2 Finite Ramsey Theorem

⇑
(∀k) ω −→ (ω)k2 Infinite Ramsey Theorem

ω −→ (ω)ω2 FALSE

▶ Easy construction of a bad coloring (AC)

▶ Problem: Too many colorings of ω[∞]

▶ Idea: Consider special colorings!
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∞-dimensional Ramsey theory

ω −→ (ω)ω2 ?

Topology tames the wilderness!

A set A ⊆ ω[∞] is Ramsey if there is an X ∈ ω[∞] such that:
▶ either X [∞] ⊆ A
▶ or X [∞] ∩ A = ∅.

Early results:

Baire sets?

▶ Nash-Williams 1965: Open sets are Ramsey
▶ Galvin, Prirky 1973: Borel sets are Ramsey
▶ Silver 1970: Analytic sets are Ramsey
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Baire hunt

ω −→ (ω)ω2 ?

Overall Beauty of Mathematics ⇒ Baire sets should be Ramsey

. . . Right?

Galvin, Prirky 1973: construction of a bad Baire coloring (AC)

Ellentuck 1974:
▶ motivation: simplify Silver’s proof
▶ metric topology is not rich enough
▶ Refine the topology!
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Baire hunt

Topologize ω[∞] by the exponential = Vietoris = Ellentuck topology

Basic open sets (a ∈ ω[<∞], B ∈ ω[∞]):

[a,B] = {X ∈ ω[∞] : a ⊏ X ∧ X ⊆ a ∪ B}



Baire hunt

Topologize ω[∞] by the exponential = Vietoris = Ellentuck topology

Basic open sets (a ∈ ω[<∞], B ∈ ω[∞]):

[a,B] = {X ∈ ω[∞] : a ⊏ X ∧ X ⊆ a ∪ B}



Baire hunt

Topologize ω[∞] by the exponential = Vietoris = Ellentuck topology

Basic open sets (a ∈ ω[<∞], B ∈ ω[∞]):

[a,B] = {X ∈ ω[∞] : a ⊏ X ∧ X ⊆ a ∪ B}

Theorem (Ellentuck 1974) Every Baire A ⊆ ω[∞] is Ramsey
w.r.t. the exponential topology on ω[∞].



Baire hunt

With X ⊆ ω[∞]:
▶ X is completely Ramsey if for every basic open set [a,B] there
is a C ∈ [a,B] such that either [a,C ] ⊆ X or [a,C ] ∩ X = ∅;

▶ X is Ramsey null if for every basic open set [a,B] there is a
C ∈ [a,B] such that [a,C ] ∩ X = ∅.

Theorem (⇔ Ellentuck) Consider ω[∞] with the exponential
topology and let X ⊆ ω[∞].

(a) X is Baire iff it is completely Ramsey;

(b) X is meager iff it is Ramsey null.



Topological Ramsey spaces

Topological Ramsey space → abstraction of the Ellentuck space

Principal references:

1 T. J. Carlson. Some unifying principles in Ramsey theory.
Discrete mathematics 68 (1988), 117–169.

2 S. Todorcevic. Introduction to Ramsey spaces. Annals of
Mathematics Studies 174, Princeton University Press 2010.



Topological Ramsey spaces

An approximation space is a triple (R,⩽, r) where:
▶ ⩽ is a preorder on R,
▶ r : ω ×R → AR (written rn(A) instead of r(n,A)).

A1. (Sequencing)

1 r0(A) = ∅ for all A;
2 if A ̸= B then rn(A) ̸= rn(B) for some n;

3 if rn(A) = rm(B) then m = n and rk(A) = rk(B) for all k < n.

For a ∈ AR and B ∈ R:

[a,B] = {X ∈ R : X ⩽ B ∧ (∃n)rn(X ) = a}

These are basic open sets of the Ellentuck topology on R.



Topological Ramsey spaces

With X ⊆ R:
▶ X is (completely) Ramsey if for every basic open set

[a,B] ̸= ∅ there is a C ∈ [a,B] such that either [a,C ] ⊆ X or
[a,C ] ∩ X = ∅;

▶ X is Ramsey null if for every basic open set [a,B] ̸= ∅ there
is a C ∈ [a,B] such that [a,C ] ∩ X = ∅.

Definition. An approximation space (R,⩽, r) is a topological
Ramsey space if every Baire set is Ramsey and every meager set is
Ramsey null w.r.t. the Ellentuck topology.



Topological Ramsey spaces

A1. (Sequencing)

1 r0(A) = ∅ for all A;
2 if A ̸= B then rn(A) ̸= rn(B) for some n;

3 if rn(A) = rm(B) then m = n and rk(A) = rk(B) for all k < n.



Topological Ramsey spaces

A1. (Sequencing) . . .

A2. (Finitization) There is a quasiordering ⩽fin on AR such that:
1 {a ∈ AR : a ⩽fin b} is finite for all b ∈ AR;
2 A ⩽ B if (∀n)(∃m)rn(A) ⩽fin rm(B);

3 for all a, b, c ∈ AR, if a ⊏ b and b ⩽fin c then there is a
d ∈ AR such that a ⩽fin d ⊏ c .



Topological Ramsey spaces

A1. (Sequencing) . . .

A2. (Finitization) . . .

A3. (Amalgamation) Let a ∈ AR, B ∈ R and let depthB(a) = n.

1 [a,C ] ̸= ∅ for all C ∈ [n,B].

2 If C ∈ R such that C ⩽ B and [a,C ] ̸= ∅ then there is a
D ∈ [n,B] such that ∅ ̸= [a,D] ⊆ [a,C ].



Topological Ramsey spaces

A1. (Sequencing) . . .

A2. (Finitization) . . .

A3. (Amalgamation) . . .

A4. (Pigeonhole) Let a ∈ ARk , let B ∈ R such that
depthB(a) = n and let O ⊆ ARk+1. Then there is a C ∈ [n,B]
such that rk+1[a,C ] ⊆ O or rk+1[a,C ] ⊆ Oc .



Topological Ramsey spaces

A1. (Sequencing) . . .

A2. (Finitization) . . .

A3. (Amalgamation) . . .

A4. (Pigeonhole) . . .

Abstract Ellentuck Theorem (Carlson 1988) Let (R,⩽, r) be
an approximation space closed in the metric topology.
If (R,⩽, r) satisfies A1–A4 then it is a top Ramsey space.



Topological Ramsey spaces

A1. (Sequencing) . . .

A2. (Finitization) . . .

A3. (Amalgamation) . . .

A4. (Pigeonhole) . . .

Abstract Ellentuck Theorem (Carlson 1988) Let (R,⩽, r) be
an approximation space closed in the metric topology.
If (R,⩽, r) satisfies A1–A4 then it is a top Ramsey space.

Spectacular applications in Ramsey theory, set theory (forcing),
Banach spaces, . . .



Structural Ramsey theory

Generalize Ramsey-type results to first-order relational structures

Finite Ramsey Theorem → Ramsey theory for classes
of finite rel structures

Infinite Ramsey Theorem → Big Ramsey degrees in
countable rel structures

Ellentuck Theorem → ?
(∞-dim struct Ramsey th?)
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Towards ∞-dimensional structural Ramsey theory

Not much is known:

▶ Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces
from Fräıssé classes, Ramsey-classification theorems, and
initial structures in the Tukey types of p-points

▶ Dobrinen 2019: Borel sets of Rado graphs and Ramsey’s
Theorem

For a Fräıssé limit F :
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from Fräıssé classes, Ramsey-classification theorems, and
initial structures in the Tukey types of p-points

▶ Dobrinen 2019: Borel sets of Rado graphs and Ramsey’s
Theorem
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Categorical setup

Do as much as possible in the language of category theory.

axiomatic approach → general notions

categorical approach → general constructions
→ automatic dualization

Unfortunately, we shall have to scale back to the language of
relational structures very quickly.
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Categorical setup

Assumptions on C:
▶ C is locally small: all homC(A,B) are sets;
▶ C is directed: for all A,B there is a C such that A→ C ← B;
▶ morphisms are mono: if f · g = f · h then g = h.
▶ Ramsey property: for all A, B there is a C such that

C −→ (B)A2 .
▶ C −→ (B)A2 : for every coloring χ : homC(A,C )→ {0, 1}
there is a w ∈ homC(B,C ) s.t. |w · homC(A,B)| = 1.



Categorical setup

A category C is a Ramsey category of finite objects if:
▶ C is a directed category whose morphisms are mono;
▶ C has the Ramsey property;
▶ the skeleton S of C has at most countably many objects;
▶ for every S ∈ Ob(S) there are only finitely many morphisms in
S whose codomain is S .
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Categorical setup

A category C is a Ramsey category of finite objects if:
▶ C is a directed category whose morphisms are mono;
▶ C has the Ramsey property;
▶ the skeleton S of C has at most countably many objects;
▶ for every S ∈ Ob(S) there are only finitely many morphisms in
S whose codomain is S .

A category is skeletal if it coincides with its skeleton.

NB. A category and its skeleton have the same Ramsey-related
properties (def’s invariant under isomorphism)



Construction 1: Pincushions

Generalizes
▶ Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces
from Fräıssé classes, Ramsey-classification theorems, and
initial structures in the Tukey types of p-points

Setup:
▶



Construction 1: Pincushions

Generalizes
▶ Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces
from Fräıssé classes, Ramsey-classification theorems, and
initial structures in the Tukey types of p-points

C

Setup:

▶ A skeletal Ramsey category of finite objects C



Construction 1: Pincushions

Generalizes
▶ Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces
from Fräıssé classes, Ramsey-classification theorems, and
initial structures in the Tukey types of p-points

C

Z1 Z2 Z3
ζ21 ζ32 ζ43 · · ·

Setup:

▶ A Fräıssé sequence Z1
ζ21−→ Z2

ζ32−→ Z3
ζ43−→ · · · in C



Construction 1: Pincushions

Generalizes
▶ Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces
from Fräıssé classes, Ramsey-classification theorems, and
initial structures in the Tukey types of p-points

C

Z1 Z2 Z3
ζ21 ζ32 ζ43 · · ·

σCZ∗
ζ∗1

ζ∗2 ζ∗3

Setup:

▶ Its Fräıssé limit Z∗ in some ambient category σC together
with ζ∗n : Zn → Z∗, n ∈ N



Construction 1: Pincushions

▶ R = {all sequences of morphisms (ai : Zi → Z∗)i∈N}

Z1

Z2 Z3 Z4
· · ·

a1
a2 a3 a4

Z∗

▶ rn
(
(ai )i∈N

)
= (a1, . . . , an)

▶ (ai )i∈N ⩽ (bi )i∈N if there exists an
increasing ξ : N→ N and morphisms
xn : Zn → Zξ(n) s.t. ak = bξ(k) · xk

Zk Zξ(k)

Z∗

xk

ak
bξ(k)



Construction 1: Pincushions

Theorem. (R,⩽, r) is a topological Ramsey space.

Proof. Verify A1-A4.

What makes us happy:

1 The construction is general and dualizes

2 Convenient setup for the general canonization theorem
à la Pudlák-Rödl (and its dual)

What makes us unhappy:

1 Not clear how pincushions relate to “copies of Z∗ in Z∗”

2 Too big: many pincushions encode the same “copy of Z∗”



Construction 1: Pincushions

Theorem. (R,⩽, r) is a topological Ramsey space.

Proof. Verify A1-A4.

What makes us happy:

1 The construction is general and dualizes

2 Convenient setup for the general canonization theorem
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Construction 2: Distinguished copies

In a category of finite relational structures and embeddings
refine Construction 1 so that pincushions correspond to certain
(“distinguished”) isomorphic copies of Z∗

Idea. Take any (ai )i∈N ∈ R:

Z1 Z2 Z3 · · · Z∗

Z∗ Z∗ Z∗ · · · A∗

a1

ζ21

a2
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Construction 2: Distinguished copies

In a category of finite relational structures and embeddings
refine Construction 1 so that pincushions correspond to certain
(“distinguished”) isomorphic copies of Z∗

Idea. Take any (ai )i∈N ∈ R:

Z1 Z2 Z3 · · · Z∗

A1 A2 A3 · · · A∗

∼=

ζ21

∼=

ζ32

∼=

ζ43

∼=

α21 α32 α43

A∗ is a standard colimit of A1
α21−→ A2

α32−→ A3
α43−→ · · ·

Write A∗ = Θ
(
(ai )i∈N

)
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In a category of finite relational structures and embeddings
refine Construction 1 so that pincushions correspond to certain
(“distinguished”) isomorphic copies of Z∗

C

Implementation.

▶ A skeletal Ramsey category C of finite relational structures
and embeddings
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Construction 2: Distinguished copies

In a category of finite relational structures and embeddings
refine Construction 1 so that pincushions correspond to certain
(“distinguished”) isomorphic copies of Z∗

C

Z1 Z2 Z3
ζ21 ζ32 ζ43 · · ·

σCZ∗
ζ∗1

ζ∗2 ζ∗3

Implementation.

▶ . . . and comes with a Fräıssé limit Z∗ together with
ζ∗n : Zn → Z∗, n ∈ N



Hrushovski property (EPPA)

▶ Let C be a category, A,B objects of C and η ∈ homC(A,B).
(η,B) is a Hrushovski pair for A if

∀X A B

A B

∀f

∀g

η

∃φ∈Aut(B)

η

▶ A sequence Z1
ζ21−→ Z2

ζ32−→ Z3
ζ43−→ · · · has the Hrushovski

property if (ζn+1n ,Zn+1) is a Hrushovski pair for Zn for all n.

Lemma. If Z1
ζ21−→ Z2

ζ32−→ Z3
ζ43−→ · · · is universal for C and has

the Hrushovski property then it is a Fräıssé sequence in C.
Consequently, its colimit Z∗ is ultrahomogeneous for C.
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Construction 2: Distinguished copies

▶ R = {Θ(a) : a ∈ R}
▶ ≼ and r defined somehow (technical!)

Theorem. (R,≼, r) is a topological Ramsey space.

Proof strategy. Transport the structure from R to R
1 (R,≼, r), (R′,≼′, r ′) . . . approximation spaces

2 φ : R → R′ is a homomorphism if φ([n,A]R) = [n, φ(A)]R′

3 Lemma (Carslon). If R is a top Ram spc and φ : R → R′ a
surjective homomorphism then R′ is also a top Ram spc.

4 Θ is obviously surjective.

5 Hrushovski property ⇒ Θ is a homomorphism
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1 Elements of R are structures isomorphic to Z∗
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1 Still too big

2 R∩
(
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)
= ∅



Construction 2: Distinguished copies

▶ R = {Θ(a) : a ∈ R}
▶ ≼ and r defined somehow (technical!)

Theorem. (R,≼, r) is a topological Ramsey space.

What makes us happy:

1 Elements of R are structures isomorphic to Z∗

What makes us unhappy:

1 Still too big

2 R∩
(
Z∗
Z∗

)
= ∅



Construction 3: Dense copies



Construction 3: Dense copies

F . . . a Fräıssé limit w/ SAP age

a . . . a tuple in F n

p = p(x/a) . . . a qf 1-type

βp = {b ∈ F : qftpF (b/a) = p}

Enumerate all nonempty βp’s as
β1, β2, β3, . . .

F

βp

a1

a2
a3

b1

b2

Fact. The βi ’s are basic open sets of a topology on F , call it τF .

Example. τQ is the usual interval topology on Q.



Construction 3: Dense copies

F . . . a Fräıssé limit w/ SAP age

τF . . . topology generated by βi ’s

Def. D ⊆ F is a dense copy of F if D is dense w.r.t. τF .

DF all dense copies of F .

Lemma. ⟨D⟩F ∼= F for all D ∈ DF .

Nonexample. Rado graph

copy

not dense

copy

not dense



Construction 3: Dense copies

F . . . a Fräıssé limit w/ SAP age

Enumerate F as v1 < v2 < v3 < . . .

▶ RF is the set of all infinite subsets of A ⊆ F such that

A =
{

a11︸︷︷︸
A(1)

< a21 < a22︸ ︷︷ ︸
A(2)

< . . . < an1 < an2 < . . . < ann︸ ︷︷ ︸
A(n)

< . . .
}

and anm ∈ βm for all m, n ∈ N with m ⩽ n.

▶ rFn (A) = (A(1),A(2), . . . ,A(n))

▶ A ⊑F B if there are n1 < n2 < n3 < . . . s.t. A(i) ⊑ B(ni ).



Construction 3: Dense copies

Theorem. (RF ,⊑F , rF ) is a topological Ramsey space.

Proof. Verify A1-A4.

What makes us happy:

We finally have a topological Ramsey space of copies of F !

What makes us unhappy:

Lemma. Assume that there are i ̸= j s.t. βi ∩ βj = ∅.
(NB: this is usually the case; fails for structures like (N,=).)

Then RF is nowhere dense in DF .
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Topological Ramsey spaces – modeled after the Ellentuck space

▶ objects identified with sequences of finite approximations;

▶ all nth approximations are required to be isomorphic.
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Concluding meditations

Topological Ramsey spaces – modeled after the Ellentuck space

▶ objects identified with sequences of finite approximations;

▶ all nth approximations are required to be isomorphic.

To fully understand ∞-dimensional structural Ramsey theory
we need a different theory of topological Ramsey spaces!
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