On topological Ramsey spaces over and around Fraïssé limits

#### Dragan Mašulović<sup>1</sup> (Joint work with Natasha Dobrinen<sup>2</sup>)

<sup>1</sup>Dept of Math and Inf, Faculty of Sciences, University of Novi Sad, Serbia <sup>2</sup>Dept of Mathematics, University of Notre Dame, USA

> Conference on Generic structures Będlewo, 2023 Oct 27

# Thanks





Supported by the Science Fund of the Republic of Serbia Grant No. 7750027 Set-theoretic, model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity – SMART

### Thanks



# Outline of the talk

1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

 $(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$  Finite Ramsey Theorem

 $(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$  Finite Ramsey Theorem

 $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$ 

 $(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$  Finite Ramsey Theorem

 $(\forall k)(\forall n) \omega \longrightarrow (n)_2^k$  Finite Ramsey Theorem

$$(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$$
  
 $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$ 

 $(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$ 

Finite Ramsey Theorem  $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k \quad \text{Finite Ramsey Theorem}$ 

$$(\forall k) \ \omega \longrightarrow (\omega)_2^k$$

$$(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$$

$$(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$$

 $(\forall k) \ \omega \longrightarrow (\omega)_2^k$  Infinite Ramsey Theorem

$$(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$$
  
 $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$   
 $(\forall k) \ \omega \longrightarrow (\omega)_2^k$ 

 $\omega \longrightarrow (\omega)_2^{\omega}$ 

 $(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$  $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$  $(\forall k) \ \omega \longrightarrow (\omega)_2^k$ 

 $(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$  Finite Ramsey Theorem

 $(\forall k)(\forall n) \omega \longrightarrow (n)_2^k$  Finite Ramsey Theorem ♠  $(\forall k) \ \omega \longrightarrow (\omega)_2^k$  Infinite Ramsey Theorem

 $\omega \longrightarrow (\omega)_2^{\omega}$  FALSE

$$(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$$
 F  
 $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$  F  
 $(\forall k) \ \omega \longrightarrow (\omega)_2^k$  In

 $\omega \longrightarrow (\omega)_2^{\omega}$  FALSE

Easy construction of a bad coloring (AC)

$$(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$$
  
 $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$   
 $(\forall k) \ \omega \longrightarrow (\omega)_2^k$ 

 $\omega \longrightarrow (\omega)_2^{\omega}$  FALSE

- Easy construction of a bad coloring (AC)
- Problem: Too many colorings of  $\omega^{[\infty]}$

$$(\forall k)(\forall n)(\exists L) \ L \longrightarrow (n)_2^k$$
  
 $(\forall k)(\forall n) \ \omega \longrightarrow (n)_2^k$   
 $(\forall k) \ \omega \longrightarrow (\omega)_2^k$ 

 $\omega \longrightarrow (\omega)_2^{\omega}$  FALSE

- Easy construction of a bad coloring (AC)
- Problem: Too many colorings of  $\omega^{[\infty]}$
- ► Idea: Consider special colorings!

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

A set  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey if there is an  $X \in \omega^{[\infty]}$  such that:

• either 
$$X^{[\infty]} \subseteq \mathcal{A}$$

• or 
$$X^{[\infty]} \cap \mathcal{A} = \emptyset$$
.

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

A set  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey if there is an  $X \in \omega^{[\infty]}$  such that:

• either 
$$X^{[\infty]} \subseteq \mathcal{A}$$

• or 
$$X^{[\infty]} \cap \mathcal{A} = \emptyset$$
.

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

A set  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey if there is an  $X \in \omega^{[\infty]}$  such that:

• either 
$$X^{[\infty]} \subseteq \mathcal{A}$$

• or 
$$X^{[\infty]} \cap \mathcal{A} = \emptyset$$
.

Early results:

► Nash-Williams 1965: Open sets are Ramsey

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

A set  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey if there is an  $X \in \omega^{[\infty]}$  such that:

• either 
$$X^{[\infty]} \subseteq \mathcal{A}$$

• or 
$$X^{[\infty]} \cap \mathcal{A} = \emptyset$$
.

- ► Nash-Williams 1965: Open sets are Ramsey
- ► Galvin, Prirky 1973: Borel sets are Ramsey

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

A set  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey if there is an  $X \in \omega^{[\infty]}$  such that:

• either 
$$X^{[\infty]} \subseteq \mathcal{A}$$

• or 
$$X^{[\infty]} \cap \mathcal{A} = \emptyset$$
.

- Nash-Williams 1965: Open sets are Ramsey
- ► Galvin, Prirky 1973: Borel sets are Ramsey
- Silver 1970: Analytic sets are Ramsey

$$\omega \longrightarrow (\omega)_2^{\omega}$$
?

Topology tames the wilderness!

A set  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey if there is an  $X \in \omega^{[\infty]}$  such that:

• either 
$$X^{[\infty]} \subseteq \mathcal{A}$$

• or 
$$X^{[\infty]} \cap \mathcal{A} = \emptyset$$
.

- Nash-Williams 1965: Open sets are Ramsey
- ► Galvin, Prirky 1973: Borel sets are Ramsey
- Silver 1970: Analytic sets are Ramsey



$$\omega \longrightarrow (\omega)_2^{\omega}$$
 ?

*Overall Beauty of Mathematics*  $\Rightarrow$  *Baire sets should be Ramsey* 

$$\omega \longrightarrow (\omega)_2^{\omega}$$
 ?

Overall Beauty of Mathematics  $\Rightarrow$  Baire sets should be Ramsey

... Right?

$$\omega \longrightarrow (\omega)_2^{\omega}$$
 ?

 $\textit{Overall Beauty of Mathematics} \Rightarrow \textit{Baire sets should be Ramsey}$ 

... Right?

Galvin, Prirky 1973: construction of a bad Baire coloring (AC)

$$\omega \longrightarrow (\omega)_2^{\omega}$$
 ?

Overall Beauty of Mathematics  $\Rightarrow$  Baire sets should be Ramsey

... Right?

Galvin, Prirky 1973: construction of a bad Baire coloring (AC)

Ellentuck 1974:

motivation: simplify Silver's proof

$$\omega \longrightarrow (\omega)_2^{\omega}$$
 ?

Overall Beauty of Mathematics  $\Rightarrow$  Baire sets should be Ramsey

... Right?

Galvin, Prirky 1973: construction of a bad Baire coloring (AC)

Ellentuck 1974:

- motivation: simplify Silver's proof
- metric topology is not rich enough

$$\omega \longrightarrow (\omega)_2^{\omega}$$
 ?

Overall Beauty of Mathematics  $\Rightarrow$  Baire sets should be Ramsey

... Right?

Galvin, Prirky 1973: construction of a bad Baire coloring (AC)

Ellentuck 1974:

- motivation: simplify Silver's proof
- metric topology is not rich enough
- ► *Refine the topology!*

Topologize  $\omega^{[\infty]}$  by the exponential = Vietoris = Ellentuck topology

Basic open sets ( $a \in \omega^{[<\infty]}$ ,  $B \in \omega^{[\infty]}$ ):

$$[a,B] = \{X \in \omega^{[\infty]} : a \sqsubset X \land X \subseteq a \cup B\}$$

Topologize  $\omega^{[\infty]}$  by the exponential = Vietoris = Ellentuck topology

Basic open sets ( $a \in \omega^{[<\infty]}$ ,  $B \in \omega^{[\infty]}$ ):

$$[a,B] = \{X \in \omega^{[\infty]} : a \sqsubset X \land X \subseteq a \cup B\}$$



Topologize  $\omega^{[\infty]}$  by the exponential = Vietoris = Ellentuck topology

Basic open sets ( $a \in \omega^{[<\infty]}$ ,  $B \in \omega^{[\infty]}$ ):

$$[a,B] = \{X \in \omega^{[\infty]} : a \sqsubset X \land X \subseteq a \cup B\}$$

**Theorem (Ellentuck 1974)** Every Baire  $\mathcal{A} \subseteq \omega^{[\infty]}$  is Ramsey w.r.t. the exponential topology on  $\omega^{[\infty]}$ .

With  $\mathcal{X} \subseteq \omega^{[\infty]}$ :

- X is completely Ramsey if for every basic open set [a, B] there is a C ∈ [a, B] such that either [a, C] ⊆ X or [a, C] ∩ X = Ø;
- ▶  $\mathcal{X}$  is Ramsey null if for every basic open set [a, B] there is a  $C \in [a, B]$  such that  $[a, C] \cap \mathcal{X} = \emptyset$ .

**Theorem (\Leftrightarrow Ellentuck)** Consider  $\omega^{[\infty]}$  with the exponential topology and let  $\mathcal{X} \subseteq \omega^{[\infty]}$ .

- (a)  $\mathcal{X}$  is Baire iff it is completely Ramsey;
- (b)  $\mathcal{X}$  is meager iff it is Ramsey null.

Topological Ramsey space  $\rightarrow$  abstraction of the Ellentuck space

Principal references:

- **1** T. J. Carlson. *Some unifying principles in Ramsey theory.* Discrete mathematics 68 (1988), 117–169.
- 2 S. Todorcevic. Introduction to Ramsey spaces. Annals of Mathematics Studies 174, Princeton University Press 2010.

An approximation space is a triple  $(\mathcal{R}, \leq, r)$  where:

- ▶  $\leq$  is a preorder on  $\mathcal{R}$ ,
- $r: \omega \times \mathcal{R} \to \mathcal{AR}$  (written  $r_n(A)$  instead of r(n, A)).
- A1. (Sequencing)
  - 1  $r_0(A) = \emptyset$  for all A;
  - 2 if  $A \neq B$  then  $r_n(A) \neq r_n(B)$  for some n;
  - 3 if  $r_n(A) = r_m(B)$  then m = n and  $r_k(A) = r_k(B)$  for all k < n.

For  $a \in AR$  and  $B \in R$ :

$$[a,B] = \{X \in \mathcal{R} : X \leqslant B \land (\exists n)r_n(X) = a\}$$

These are basic open sets of the Ellentuck topology on  $\mathcal{R}$ .

With  $\mathcal{X} \subseteq \mathcal{R}$ :

- X is (completely) Ramsey if for every basic open set
   [a, B] ≠ Ø there is a C ∈ [a, B] such that either [a, C] ⊆ X or
   [a, C] ∩ X = Ø;
- X is Ramsey null if for every basic open set [a, B] ≠ Ø there is a C ∈ [a, B] such that [a, C] ∩ X = Ø.

**Definition.** An approximation space  $(\mathcal{R}, \leq, r)$  is a topological Ramsey space if every Baire set is Ramsey and every meager set is Ramsey null w.r.t. the Ellentuck topology.

- A1. (Sequencing)
  - 1  $r_0(A) = \emptyset$  for all A;
  - 2 if  $A \neq B$  then  $r_n(A) \neq r_n(B)$  for some *n*;
  - 3 if  $r_n(A) = r_m(B)$  then m = n and  $r_k(A) = r_k(B)$  for all k < n.

- A1. (Sequencing) ...
- A2. (Finitization) There is a quasiordering  $\leqslant_{\mathsf{fin}}$  on  $\mathcal{AR}$  such that:
  - 1  $\{a \in AR : a \leq_{fin} b\}$  is finite for all  $b \in AR$ ;
  - 2  $A \leq B$  if  $(\forall n)(\exists m)r_n(A) \leq_{\text{fin}} r_m(B)$ ;
  - 3 for all  $a, b, c \in AR$ , if  $a \sqsubset b$  and  $b \leq_{fin} c$  then there is a  $d \in AR$  such that  $a \leq_{fin} d \sqsubset c$ .

- A1. (Sequencing) ...
- A2. (Finitization) ...
- **A3.** (Amalgamation) Let  $a \in AR$ ,  $B \in R$  and let depth<sub>B</sub>(a) = n.
  - 1  $[a, C] \neq \emptyset$  for all  $C \in [n, B]$ .
  - 2 If  $C \in \mathcal{R}$  such that  $C \leq B$  and  $[a, C] \neq \emptyset$  then there is a  $D \in [n, B]$  such that  $\emptyset \neq [a, D] \subseteq [a, C]$ .

- A1. (Sequencing) ...
- A2. (Finitization) ...
- A3. (Amalgamation) ...

**A4.** (Pigeonhole) Let  $a \in A\mathcal{R}_k$ , let  $B \in \mathcal{R}$  such that depth<sub>B</sub>(a) = n and let  $\mathcal{O} \subseteq A\mathcal{R}_{k+1}$ . Then there is a  $C \in [n, B]$  such that  $r_{k+1}[a, C] \subseteq \mathcal{O}$  or  $r_{k+1}[a, C] \subseteq \mathcal{O}^c$ .

- A1. (Sequencing) ...
- A2. (Finitization) ...
- A3. (Amalgamation) ...
- A4. (Pigeonhole) ...

Abstract Ellentuck Theorem (Carlson 1988) Let  $(\mathcal{R}, \leq, r)$  be an approximation space closed in the metric topology. If  $(\mathcal{R}, \leq, r)$  satisfies A1–A4 then it is a top Ramsey space.

- A1. (Sequencing) ...
- A2. (Finitization) ...
- A3. (Amalgamation) ...
- A4. (Pigeonhole) ...

Abstract Ellentuck Theorem (Carlson 1988) Let  $(\mathcal{R}, \leq, r)$  be an approximation space closed in the metric topology. If  $(\mathcal{R}, \leq, r)$  satisfies A1–A4 then it is a top Ramsey space.

Spectacular applications in Ramsey theory, set theory (forcing), Banach spaces, ...

 $\begin{array}{rcl} \mbox{Finite Ramsey Theorem} & \rightarrow & \mbox{Ramsey theory for classes} \\ & \mbox{of finite rel structures} \end{array}$ 

- Finite Ramsey Theorem  $\rightarrow$  Ramsey theory for classes of finite rel structures

Finite Ramsey Theorem  $\rightarrow$  Ramsey theory for classes of finite rel structures

Ellentuck Theorem  $\rightarrow$  ? ( $\infty$ -dim struct Ramsey th?)

## Towards $\infty\text{-dimensional structural Ramsey theory}$

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

## Towards $\infty$ -dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

For a Fraïssé limit  $\mathcal{F}$ :

**Goal 1:** Construct a topological Ramsey space  $\mathcal{R} \subseteq \begin{pmatrix} \mathcal{F} \\ \mathcal{F} \end{pmatrix}$ .

## Towards $\infty$ -dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

For a Fraïssé limit  $\mathcal{F}$ :

- **Goal 1:** Construct a topological Ramsey space  $\mathcal{R} \subseteq \begin{pmatrix} \mathcal{F} \\ \mathcal{F} \end{pmatrix}$ .
- **Goal 2:** Infer properties of  $\mathcal{F}$  using the machinery of topological Ramsey spaces.

## Towards $\infty$ -dimensional structural Ramsey theory

Not much is known:

- Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points
- Dobrinen 2019: Borel sets of Rado graphs and Ramsey's Theorem

For a Fraïssé limit  $\mathcal{F}$ :

**Goal 1:** Construct a topological Ramsey space  $\mathcal{R} \subseteq \begin{pmatrix} \mathcal{F} \\ \mathcal{F} \end{pmatrix}$ .

**Goal 2:** Infer properties of  $\mathcal{F}$  using the machinery of topological Ramsey spaces.

#### 2 Three constructions

3 Concluding meditations

Do as much as possible in the language of category theory.

axiomatic approach  $\rightarrow$  general notions

 $\begin{array}{l} \mbox{categorical approach} \rightarrow \mbox{general constructions} \\ \rightarrow \mbox{ automatic dualization} \end{array}$ 

Do as much as possible in the language of category theory.

axiomatic approach  $\rightarrow$  general notions

 $\begin{array}{l} \mathsf{categorical \ approach} \to \mathsf{general \ constructions} \\ \to \mathsf{automatic \ dualization} \end{array}$ 

Unfortunately, we shall have to scale back to the language of relational structures very quickly.

Assumptions on C:

- ► C is locally small: all hom<sub>C</sub>(A, B) are sets;
- C is directed: for all A, B there is a C such that  $A \rightarrow C \leftarrow B$ ;
- morphisms are mono: if  $f \cdot g = f \cdot h$  then g = h.
- Ramsey property: for all A, B there is a C such that  $C \longrightarrow (B)_2^A$ .
- ►  $C \longrightarrow (B)_2^A$ : for every coloring  $\chi$  : hom<sub>C</sub>(A, C) → {0,1} there is a  $w \in hom_C(B, C)$  s.t.  $|w \cdot hom_C(A, B)| = 1$ .

- C is a directed category whose morphisms are mono;
- ► C has the Ramsey property;
- ▶ the skeleton S of C has at most countably many objects;
- For every S ∈ Ob(S) there are only finitely many morphisms in S whose codomain is S.

- C is a directed category whose morphisms are mono;
- ► C has the Ramsey property;
- ▶ the skeleton S of C has at most countably many objects;
- For every S ∈ Ob(S) there are only finitely many morphisms in S whose codomain is S.

- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- ▶ the skeleton S of C has at most countably many objects;
- For every S ∈ Ob(S) there are only finitely many morphisms in S whose codomain is S.



- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- ▶ the skeleton S of C has at most countably many objects;
- For every S ∈ Ob(S) there are only finitely many morphisms in S whose codomain is S.



- C is a directed category whose morphisms are mono;
- C has the Ramsey property;
- ▶ the skeleton S of C has at most countably many objects;
- For every S ∈ Ob(S) there are only finitely many morphisms in S whose codomain is S.



A category C is a Ramsey category of finite objects if:

- C is a directed category whose morphisms are mono;
- ► C has the Ramsey property;
- ▶ the skeleton S of C has at most countably many objects;
- For every S ∈ Ob(S) there are only finitely many morphisms in S whose codomain is S.
- A category is skeletal if it coincides with its skeleton.

**NB.** A category and its skeleton have the same Ramsey-related properties (def's invariant under isomorphism)

Generalizes

Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Generalizes

Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Setup:

► A skeletal Ramsey category of finite objects C



Generalizes

Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Setup:

• A Fraïssé sequence 
$$Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$$
 in C

$$Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$$

Generalizes

Dobrinen, Mijares, Trujillo 2017: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

Setup:

► Its Fraïssé limit  $Z_*$  in some ambient category  $\sigma C$  together with  $\zeta_n^* : Z_n \to Z_*$ ,  $n \in \mathbb{N}$ 



•  $\mathcal{R} = \{ \text{all sequences of morphisms } (a_i : Z_i \to Z_*)_{i \in \mathbb{N}} \}$ 



$$\blacktriangleright r_n((a_i)_{i\in\mathbb{N}}) = (a_1,\ldots,a_n)$$

►  $(a_i)_{i \in \mathbb{N}} \leq (b_i)_{i \in \mathbb{N}}$  if there exists an increasing  $\xi : \mathbb{N} \to \mathbb{N}$  and morphisms  $x_n : Z_n \to Z_{\xi(n)}$  s.t.  $a_k = b_{\xi(k)} \cdot x_k$ 



**Theorem.**  $(\mathcal{R}, \leq, r)$  is a topological Ramsey space.

Proof. Verify A1-A4.

**Theorem.**  $(\mathcal{R}, \leq, r)$  is a topological Ramsey space.

Proof. Verify A1-A4.

#### What makes us happy:

- 1 The construction is general *and dualizes*
- 2 Convenient setup for the general canonization theorem à la Pudlák-Rödl (*and its dual*)

**Theorem.**  $(\mathcal{R}, \leq, r)$  is a topological Ramsey space.

Proof. Verify A1-A4.

#### What makes us happy:

- 1 The construction is general and dualizes
- 2 Convenient setup for the general canonization theorem à la Pudlák-Rödl (*and its dual*)

#### What makes us unhappy:

- **1** Not clear how pincushions relate to "copies of  $Z_*$  in  $Z_*$ "
- 2 Too big: many pincushions encode the same "copy of  $Z_*$ "

# Construction 2: Distinguished copies

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

. . .

. . .

**Idea.** Take any  $(a_i)_{i \in \mathbb{N}} \in \mathcal{R}$ :

$$\begin{array}{cccc} Z_1 & Z_2 & Z_3 \\ a_1 & a_2 & & & & \\ Z_* & Z_* & & & & Z_* \end{array}$$

# Construction 2: Distinguished copies

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

. .

. .

**Idea.** Take any  $(a_i)_{i \in \mathbb{N}} \in \mathcal{R}$ :

$$egin{array}{ccccc} Z_1 & Z_2 & Z_3 & \cdot & \cdot \ \cong & & \downarrow \cong & & \downarrow \cong & \ A_1 & A_2 & A_3 & \cdot & \cdot \end{array}$$

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

**Idea.** Take any  $(a_i)_{i \in \mathbb{N}} \in \mathcal{R}$ :



In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

**Idea.** Take any  $(a_i)_{i \in \mathbb{N}} \in \mathcal{R}$ :



In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

**Idea.** Take any  $(a_i)_{i \in \mathbb{N}} \in \mathcal{R}$ :



In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

**Idea.** Take any  $(a_i)_{i \in \mathbb{N}} \in \mathcal{R}$ :

 $A_*$  is a standard colimit of  $A_1 \xrightarrow{\alpha_1^2} A_2 \xrightarrow{\alpha_2^3} A_3 \xrightarrow{\alpha_3^4} \cdots$ 

Write  $A_* = \Theta((a_i)_{i \in \mathbb{N}})$ 

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

#### Implementation.

 A skeletal Ramsey category C of finite relational structures and embeddings

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

#### Implementation.

• A Fraïssé sequence 
$$Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$$
 in C

$$Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$$

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

#### Implementation.

▶ ... which has the Hrushovski property (to be def'd soon!)

$$Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$$

In a category of finite **relational structures and embeddings** refine Construction 1 so that pincushions correspond to certain ("distinguished") isomorphic copies of  $Z_*$ 

#### Implementation.

• ... and comes with a Fraïssé limit  $Z_*$  together with  $\zeta_n^* : Z_n \to Z_*, n \in \mathbb{N}$ 



## Hrushovski property (EPPA)

Let C be a category, A, B objects of C and η ∈ hom<sub>C</sub>(A, B). (η, B) is a Hrushovski pair for A if



• A sequence  $Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$  has the Hrushovski property if  $(\zeta_n^{n+1}, Z_{n+1})$  is a Hrushovski pair for  $Z_n$  for all n.

## Hrushovski property (EPPA)

Let C be a category, A, B objects of C and η ∈ hom<sub>C</sub>(A, B). (η, B) is a Hrushovski pair for A if



• A sequence  $Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$  has the Hrushovski property if  $(\zeta_n^{n+1}, Z_{n+1})$  is a Hrushovski pair for  $Z_n$  for all n.

**Lemma.** If  $Z_1 \xrightarrow{\zeta_1^2} Z_2 \xrightarrow{\zeta_2^3} Z_3 \xrightarrow{\zeta_3^4} \cdots$  is universal for C and has the Hrushovski property then it is a Fraïssé sequence in C. Consequently, its colimit  $Z_*$  is ultrahomogeneous for C.

$$\blacktriangleright \ \overline{\mathcal{R}} = \{\Theta(\mathsf{a}) : \mathsf{a} \in \mathcal{R}\}$$

**Theorem.**  $(\overline{\mathcal{R}}, \preccurlyeq, \overline{r})$  is a topological Ramsey space.

$$\blacktriangleright \ \overline{\mathcal{R}} = \{\Theta(\mathsf{a}) : \mathsf{a} \in \mathcal{R}\}$$

▶  $\preccurlyeq$  and  $\overline{r}$  defined somehow (*technical*!)

**Theorem.**  $(\overline{\mathcal{R}}, \preccurlyeq, \overline{r})$  is a topological Ramsey space.

*Proof strategy.* Transport the structure from  $\mathcal{R}$  to  $\overline{\mathcal{R}}$ 

$$\blacktriangleright \ \overline{\mathcal{R}} = \{\Theta(\mathsf{a}) : \mathsf{a} \in \mathcal{R}\}$$

▶  $\preccurlyeq$  and  $\overline{r}$  defined somehow (*technical*!)

**Theorem.**  $(\overline{\mathcal{R}}, \preccurlyeq, \overline{r})$  is a topological Ramsey space.

*Proof strategy.* Transport the structure from  $\mathcal{R}$  to  $\overline{\mathcal{R}}$ 

1 
$$(\mathcal{R},\preccurlyeq,r)$$
,  $(\mathcal{R}',\preccurlyeq',r')$  ... approximation spaces

- 2  $\varphi : \mathcal{R} \to \mathcal{R}'$  is a homomorphism if  $\varphi([n, A]_{\mathcal{R}}) = [n, \varphi(A)]_{\mathcal{R}'}$
- 3 Lemma (Carslon). If *R* is a top Ram spc and *φ* : *R* → *R'* a surjective homomorphism then *R'* is also a top Ram spc.
- 4  $\Theta$  is obviously surjective.
- 5 Hrushovski property  $\Rightarrow \Theta$  is a homomorphism

$$\blacktriangleright \ \overline{\mathcal{R}} = \{\Theta(\mathsf{a}) : \mathsf{a} \in \mathcal{R}\}$$

▶  $\preccurlyeq$  and  $\overline{r}$  defined somehow (*technical*!)

**Theorem.**  $(\overline{\mathcal{R}}, \preccurlyeq, \overline{r})$  is a topological Ramsey space.

#### What makes us happy:

**1** Elements of  $\overline{\mathcal{R}}$  are structures isomorphic to  $Z_*$ 

$$\blacktriangleright \ \overline{\mathcal{R}} = \{\Theta(\mathsf{a}) : \mathsf{a} \in \mathcal{R}\}$$

▶  $\preccurlyeq$  and  $\overline{r}$  defined somehow (*technical*!)

**Theorem.**  $(\overline{\mathcal{R}}, \preccurlyeq, \overline{r})$  is a topological Ramsey space.

#### What makes us happy:

**1** Elements of  $\overline{\mathcal{R}}$  are structures isomorphic to  $Z_*$ 

#### What makes us unhappy:

1 Still too big

$$2 \ \overline{\mathcal{R}} \cap \begin{pmatrix} Z_* \\ Z_* \end{pmatrix} = \emptyset$$







**Fact.** The  $\beta_i$ 's are basic open sets of a topology on F, call it  $\tau^{\mathcal{F}}$ .

**Example.**  $\tau^{\mathbb{Q}}$  is the usual interval topology on  $\mathbb{Q}$ .

 $\mathcal F$   $\ldots\,$  a Fraïssé limit w/ SAP age

 $\tau^{\mathcal{F}}$  ... topology generated by  $\beta_i$ 's

**Def.**  $D \subseteq F$  is a dense copy of  $\mathcal{F}$  if D is dense w.r.t.  $\tau^{\mathcal{F}}$ .  $\mathcal{D}^{\mathcal{F}}$  all dense copies of  $\mathcal{F}$ .

**Lemma.**  $\langle D \rangle_{\mathcal{F}} \cong \mathcal{F}$  for all  $D \in \mathcal{D}^{\mathcal{F}}$ .

Nonexample.



 $\mathcal{F}$  ... a Fraïssé limit w/ SAP age

Enumerate F as  $v_1 < v_2 < v_3 < \ldots$ 

•  $\mathcal{R}^{\mathcal{F}}$  is the set of all infinite subsets of  $A \subseteq F$  such that  $A = \left\{\underbrace{a_1^1}_{A(1)} < \underbrace{a_1^2 < a_2^2}_{A(2)} < \ldots < \underbrace{a_1^n < a_2^n < \ldots < a_n^n}_{A(n)} < \ldots\right\}$ 

and  $a_m^n \in \beta_m$  for all  $m, n \in \mathbb{N}$  with  $m \leq n$ .

**Theorem.**  $(\mathcal{R}^{\mathcal{F}}, \sqsubseteq^{\mathcal{F}}, r^{\mathcal{F}})$  is a topological Ramsey space.

Proof. Verify A1-A4.

**Theorem.**  $(\mathcal{R}^{\mathcal{F}}, \sqsubseteq^{\mathcal{F}}, r^{\mathcal{F}})$  is a topological Ramsey space.

Proof. Verify A1-A4.

#### What makes us happy:

We finally have a topological Ramsey space of copies of  $\mathcal{F}$ !

**Theorem.**  $(\mathcal{R}^{\mathcal{F}}, \sqsubseteq^{\mathcal{F}}, r^{\mathcal{F}})$  is a topological Ramsey space.

Proof. Verify A1-A4.

#### What makes us happy:

We finally have a topological Ramsey space of copies of  $\mathcal{F}$ !

#### What makes us unhappy:

Lemma. Assume that there are  $i \neq j$  s.t.  $\beta_i \cap \beta_j = \emptyset$ . (NB: this is usually the case; fails for structures like  $(\mathbb{N}, =)$ .) Then  $\mathcal{R}^{\mathcal{F}}$  is nowhere dense in  $\mathcal{D}^{\mathcal{F}}$ . 1 Topological Ramsey spaces

2 Three constructions

3 Concluding meditations

# Construction 1: Too big

# Construction 2: Too big

Construction 3: Too small



Construction 3: Too small



Topological Ramsey spaces – modeled after the Ellentuck space

Topological Ramsey spaces - modeled after the Ellentuck space



objects identified with sequences of finite approximations;

Topological Ramsey spaces – modeled after the Ellentuck space

- objects identified with sequences of finite approximations;
- ▶ all *n*th approximations are required to be isomorphic.

Topological Ramsey spaces – modeled after the Ellentuck space

- objects identified with sequences of finite approximations;
- ▶ all *n*th approximations are required to be isomorphic.



Topological Ramsey spaces – modeled after the Ellentuck space

- objects identified with sequences of finite approximations;
- ▶ all *n*th approximations are required to be isomorphic.

To fully understand  $\infty$ -dimensional structural Ramsey theory we need a different theory of topological Ramsey spaces!