The Borel complexity of the bi-interpretability relation between omega-categorical structures

André Nies, joint with Schlicht and Tent

Generic structures

Oct 2023

Results, and a question (will explain...)

Theorem (N, Schlicht and Tent, J. Math Logic 2021) BI is Borel-below E_{∞} , where BI is the bi-interpretability relation between omega-categorical structures, and E_{∞} is a Borel equivalence relation with all classes countable.

Results, and a question (will explain...)

Theorem (N, Schlicht and Tent, J. Math Logic 2021) BI is Borel-below E_{∞} , where BI is the bi-interpretability relation between omega-categorical structures, and E_{∞} is a Borel equivalence relation with all classes countable.

Recall that $G \leq_c \text{Sym}(\mathbb{N})$ is called oligomorphic if for each k, the action of G on \mathbb{N}^k only has finitely many orbits.

Corollary

The topological isomorphism relation between oligomorphic groups is also Borel-below E_{∞} .

Question

Is there a lower bound other than $id_{\mathbb{R}}$ on the complexity?

Borel classes of closed subgroups of $\operatorname{Sym}(\mathbb{N})$

The closed subgroups G of $\text{Sym}(\mathbb{N})$ form a "standard Borel space":

• If σ is a string let $[\sigma] = \{\pi \in \text{Sym}(\mathbb{N}) : \sigma \prec \pi\}.$

Borel classes of closed subgroups of $Sym(\mathbb{N})$

The closed subgroups G of $Sym(\mathbb{N})$ form a "standard Borel space":

• If σ is a string let $[\sigma] = \{\pi \in \operatorname{Sym}(\mathbb{N}) \colon \sigma \prec \pi\}.$

• The σ -algebra of Borel sets is generated by the sets

 $\{G\colon G\cap [\sigma]\neq \emptyset\}.$

Borel classes of closed subgroups of $Sym(\mathbb{N})$

The closed subgroups G of $Sym(\mathbb{N})$ form a "standard Borel space":

• If σ is a string let $[\sigma] = \{\pi \in \operatorname{Sym}(\mathbb{N}) : \sigma \prec \pi\}.$

• The σ -algebra of Borel sets is generated by the sets

 $\{G\colon G\cap [\sigma]\neq \emptyset\}.$

Programme (Kechris, N. and Tent, 2018; Logic Blog 2020)

(a) Determine whether classes \mathcal{C} of closed subgroups of S_{∞} are Borel.

Borel classes of closed subgroups of $Sym(\mathbb{N})$

The closed subgroups G of $Sym(\mathbb{N})$ form a "standard Borel space":

• If σ is a string let $[\sigma] = \{\pi \in \operatorname{Sym}(\mathbb{N}) \colon \sigma \prec \pi\}.$

• The σ -algebra of Borel sets is generated by the sets

 $\{G\colon G\cap [\sigma]\neq \emptyset\}.$

Programme (Kechris, N. and Tent, 2018; Logic Blog 2020)

- (a) Determine whether classes \mathcal{C} of closed subgroups of S_{∞} are Borel.
- (b) If \mathcal{C} is Borel, study the relative complexity of the topological isomorphism relation, using Borel reducibility \leq_B .

By G we always denote a closed subgroup of $\text{Sym}(\mathbb{N})$.

By G we always denote a closed subgroup of $\text{Sym}(\mathbb{N})$. Note that G is compact iff each open subgroup has only finitely many (left) cosets.

By G we always denote a closed subgroup of $\text{Sym}(\mathbb{N})$. Note that G is compact iff each open subgroup has only finitely many (left) cosets.

Definition

• G is Roelcke precompact (R.p.) if each open subgroup U has only finitely many double cosets.

By G we always denote a closed subgroup of $\text{Sym}(\mathbb{N})$. Note that G is compact iff each open subgroup has only finitely many (left) cosets.

Definition

- G is Roelcke precompact (R.p.) if each open subgroup U has only finitely many double cosets.
- G is locally Roelcke precompact if G has a Roelcke precompact open subgroup.

By G we always denote a closed subgroup of $\text{Sym}(\mathbb{N})$. Note that G is compact iff each open subgroup has only finitely many (left) cosets.

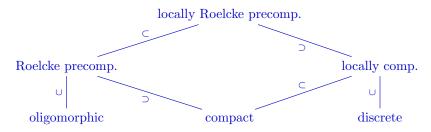
Definition

- G is Roelcke precompact (R.p.) if each open subgroup U has only finitely many double cosets.
- G is locally Roelcke precompact if G has a Roelcke precompact open subgroup.

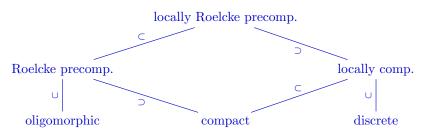
Let T_{∞} be the undirected tree with each vertex of infinite degree.

- $\operatorname{Aut}(T_{\infty})$ is locally R.p. (Zielinski), and not locally compact.
- The stabiliser of a vertex is Roelcke precompact.

Some Borel classes \mathcal{C} , and inclusion relations

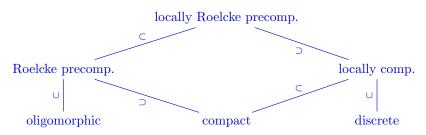


Some Borel classes C, and inclusion relations



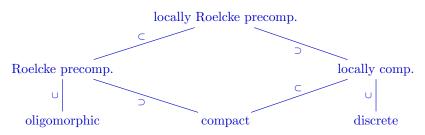
• Isomorphism relation on each class in the diagram is \leq_B graph isomorphism (Kechris, N. and Tent, 2018).

Some Borel classes \mathcal{C} , and inclusion relations



- Isomorphism relation on each class in the diagram is \leq_B graph isomorphism (Kechris, N. and Tent, 2018).
- \cong on the profinite groups is \geq_B graph isomorphism (Kechris, N. and Tent, 2018).

Some Borel classes C, and inclusion relations



- Isomorphism relation on each class in the diagram is \leq_B graph isomorphism (Kechris, N. and Tent, 2018).
- \cong on the profinite groups is \geq_B graph isomorphism (Kechris, N. and Tent, 2018).
- \cong on the class of oligomorphic groups is \leq_B a countable Borel equivalence relation (N., Schlicht and Tent, 2021).

The following originiates in Kechris, N., Tent JSL 2018.

Given a locally R.p. G, let $\mathcal{M}(G)$ be its coarse group:

• The domain consists of (numbers encoding) the Roelcke precompact open cosets in *G*.

The following originiates in Kechris, N., Tent JSL 2018.

Given a locally R.p. G, let $\mathcal{M}(G)$ be its coarse group:

- The domain consists of (numbers encoding) the Roelcke precompact open cosets in *G*.
- Ternary relation " $AB \subseteq C$ " on the domain.

The following originiates in Kechris, N., Tent JSL 2018.

Given a locally R.p. G, let $\mathcal{M}(G)$ be its coarse group:

- The domain consists of (numbers encoding) the Roelcke precompact open cosets in G.
- Ternary relation " $AB \subseteq C$ " on the domain.

R.p. open cosets approximate elements of G, so this ternary relation approximates the binary group operation.

The following originiates in Kechris, N., Tent JSL 2018.

Given a locally R.p. G, let $\mathcal{M}(G)$ be its coarse group:

- The domain consists of (numbers encoding) the Roelcke precompact open cosets in *G*.
- Ternary relation " $AB \subseteq C$ " on the domain.

R.p. open cosets approximate elements of G, so this ternary relation approximates the binary group operation.

Each R.p. open subgroup of G is a finite union of double cosets of a basic open subgroup. So \exists only countably many such subgroups.

The following originiates in Kechris, N., Tent JSL 2018.

Given a locally R.p. G, let $\mathcal{M}(G)$ be its coarse group:

- The domain consists of (numbers encoding) the Roelcke precompact open cosets in G.
- Ternary relation " $AB \subseteq C$ " on the domain.

R.p. open cosets approximate elements of G, so this ternary relation approximates the binary group operation.

Each R.p. open subgroup of G is a finite union of double cosets of a basic open subgroup. So \exists only countably many such subgroups.

Using descriptive set theory, we can view the operator \mathcal{M} as a Borel function from locally R.p. groups to structures with domain \mathbb{N} .

Define an operation \mathcal{G} reversing \mathcal{M} : from coarse groups to locally R.p. groups

• Recall that $\mathcal{M}(G)$ is the coarse group of a locally R.p. G.

Define an operation \mathcal{G} reversing \mathcal{M} : from coarse groups to locally R.p. groups

- Recall that $\mathcal{M}(G)$ is the coarse group of a locally R.p. G.
- Let \mathbf{CG} be the closure under isomorphism of the range of \mathcal{M} , among the structures on \mathbb{N} with a ternary relation.
- Write such a relation suggestively as " $AB \sqsubseteq C$ ".

Define an operation \mathcal{G} reversing \mathcal{M} : from coarse groups to locally R.p. groups

- Recall that $\mathcal{M}(G)$ is the coarse group of a locally R.p. G.
- Let \mathbf{CG} be the closure under isomorphism of the range of \mathcal{M} , among the structures on \mathbb{N} with a ternary relation.
- Write such a relation suggestively as " $AB \sqsubseteq C$ ".

Definition

Given a structure $M \in \mathbf{CG}$, let $\mathcal{G}(M)$ be the closed subgroup of $\mathrm{Sym}(\mathbb{N})$ consisting of the permutations p such that

 $AB \sqsubseteq C \iff p(A)B \sqsubseteq p(C)$ for each $A, B, C \in M$.

Recall that we have defined maps $\mathbf{LRP} \underbrace{\overset{\mathcal{M}}{\overbrace{\mathcal{G}}} \mathbf{CG}}_{\mathcal{G}}$.

Note that \mathcal{M} and \mathcal{G} forward-preserve (topological) isomorphism.

Recall that we have defined maps $\mathbf{LRP} \underbrace{\overset{\mathcal{M}}{\overbrace{c}}}_{C} \mathbf{CG}$.

Note that \mathcal{M} and \mathcal{G} forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

- **CG** is a Borel class. \mathcal{M} and \mathcal{G} are Borel maps.
- \mathcal{M} and \mathcal{G} are inverses up to isomorphism:

Recall that we have defined maps $\mathbf{LRP} \underbrace{\overset{\mathcal{M}}{\overbrace{}}}_{\mathcal{C}} \mathbf{CG}$.

Note that \mathcal{M} and \mathcal{G} forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

- **CG** is a Borel class. \mathcal{M} and \mathcal{G} are Borel maps.
- \mathcal{M} and \mathcal{G} are inverses up to isomorphism: For each $G \in \mathbf{LRP}$ and each $M \in \mathbf{CG}$,

 $\mathcal{G}(\mathcal{M}(G)) \cong_{top} G \text{ and } \mathcal{M}(\mathcal{G}(M)) \cong M.$

Recall that we have defined maps $LRP \underbrace{\overset{\mathcal{M}}{\overbrace{}}}_{C} CG$.

Note that \mathcal{M} and \mathcal{G} forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

CG is a Borel class. \mathcal{M} and \mathcal{G} are Borel maps.

• \mathcal{M} and \mathcal{G} are inverses up to isomorphism: For each $G \in \mathbf{LRP}$ and each $M \in \mathbf{CG}$, $\mathcal{G}(\mathcal{M}(G)) \cong_{top} G$ and $\mathcal{M}(\mathcal{G}(M)) \cong M$.

As a consequence, for $G_0, G_1 \in \mathbf{LRP}$ and $M_0, M_1 \in \mathbf{CG}$, we have

$$G_0 \cong_{top} G_1 \iff \mathcal{M}(G_0) \cong \mathcal{M}(G_1)$$
$$M_0 \cong M_1 \iff \mathcal{G}(M_0) \cong_{top} \mathcal{G}(M_1)$$

The case of oligomorphic groups G

Note that G and hence each open subgroup is Roelcke precompact.

Theorem (NST, 21)

Among structures on \mathbb{N} with a ternary relation symbol, let \mathcal{D} be the closure under isomorphism of $\{\mathcal{M}(G): G \text{ is oligomorphic}\}$.

- (a) The class \mathcal{D} is Borel.
- (b) \cong_{top} on the oligomorphic groups is Borel equivalent with the isomorphism relation on \mathcal{D} .

(a) is proved by a suitable axiomatisation of the class ${\cal D}$ using an infinitary language;

(b) is obtained via Borel duality for oligomorphic groups:

introduce a modification $\widehat{\mathcal{G}}$ of the "reverse" Borel operator \mathcal{G} so that $\widehat{\mathcal{G}}(M)$ is oligomorphic for $M \in \mathcal{D}$.

The following will be used for showing that bi-interpretability on ω -categorical structures is $\leq_B E_{\infty}$ (a Borel equivalence relation with all classes countable):

Theorem (Hjorth and Kechris, APAL 1997, Th. 3.8)

• Let \mathcal{D} be a Borel class of structures with domain \mathbb{N} .

The following will be used for showing that bi-interpretability on ω -categorical structures is $\leq_B E_{\infty}$ (a Borel equivalence relation with all classes countable):

Theorem (Hjorth and Kechris, APAL 1997, Th. 3.8)

- Let \mathcal{D} be a Borel class of structures with domain \mathbb{N} .
- Suppose that $\cong_{\mathcal{D}}$ is potentially F_{σ} ; that is, $\cong_{\mathcal{D}} \leq_B L$ for some F_{σ} equivalence relation L on some Polish space Y.

The following will be used for showing that bi-interpretability on ω -categorical structures is $\leq_B E_{\infty}$ (a Borel equivalence relation with all classes countable):

Theorem (Hjorth and Kechris, APAL 1997, Th. 3.8)

- Let \mathcal{D} be a Borel class of structures with domain \mathbb{N} .
- Suppose that $\cong_{\mathcal{D}}$ is potentially F_{σ} ; that is, $\cong_{\mathcal{D}} \leq_B L$ for some

 F_{σ} equivalence relation L on some Polish space Y.

Then $\cong_{\mathcal{D}} \leq_B E_{\infty}$

The following will be used for showing that bi-interpretability on ω -categorical structures is $\leq_B E_{\infty}$ (a Borel equivalence relation with all classes countable):

Theorem (Hjorth and Kechris, APAL 1997, Th. 3.8)

- Let \mathcal{D} be a Borel class of structures with domain \mathbb{N} .
- Suppose that $\cong_{\mathcal{D}}$ is potentially F_{σ} ; that is, $\cong_{\mathcal{D}} \leq_B L$ for some F_{σ} equivalence relation L on some Polish space Y.

Then $\cong_{\mathcal{D}} \leq_B E_{\infty}$

In our setting \mathcal{D} is the class of coarse groups above. We will verify the hypothesis on \mathcal{D} by showing that the relation of bi-interpretability among ω -categorical structures is F_{σ} .