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Results, and a question (will explain...)

Theorem (N, Schlicht and Tent, J. Math Logic 2021)

BI is Borel-below E∞, where BI is the bi-interpretability relation

between omega-categorical structures, and E∞ is a Borel equivalence

relation with all classes countable.

Recall that G ≤c Sym(N) is called oligomorphic if for each k, the action

of G on Nk only has finitely many orbits.

Corollary

The topological isomorphism relation between oligomorphic groups is

also Borel-below E∞.

Question

Is there a lower bound other than idR on the complexity?
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Borel classes of closed subgroups of Sym(N)

The closed subgroups G of Sym(N) form a “standard Borel space”:

If σ is a string let [σ] = {π ∈ Sym(N) : σ ≺ π}.

The σ-algebra of Borel sets is generated by the sets

{G : G ∩ [σ] ̸= ∅}.

Programme (Kechris, N. and Tent, 2018; Logic Blog 2020)

(a) Determine whether classes C of closed subgroups of S∞ are Borel.

(b) If C is Borel, study the relative complexity of the topological

isomorphism relation, using Borel reducibility ≤B.
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Largest C: locally Roelcke precompact groups

By G we always denote a closed subgroup of Sym(N).

Note that G is compact iff each open subgroup has only finitely many

(left) cosets.

Definition

G is Roelcke precompact (R.p.) if each open subgroup U has only

finitely many double cosets.

G is locally Roelcke precompact if G has a Roelcke precompact

open subgroup.

Let T∞ be the undirected tree with each vertex of infinite degree.

Aut(T∞) is locally R.p. (Zielinski), and not locally compact.

The stabiliser of a vertex is Roelcke precompact.
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Some Borel classes C, and inclusion relations

locally Roelcke precomp.

Roelcke precomp.

⊂

locally comp.

⊃

oligomorphic

∪

compact

⊃
⊂

discrete

∪

Isomorphism relation on each class in the diagram is ≤B graph

isomorphism (Kechris, N. and Tent, 2018).

∼= on the profinite groups is ≥B graph isomorphism (Kechris, N.

and Tent, 2018).

∼= on the class of oligomorphic groups is ≤B a countable Borel

equivalence relation (N., Schlicht and Tent, 2021).
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Coarse group associated with a l.R.p. group

The following originiates in Kechris, N., Tent JSL 2018.

Given a locally R.p. G, let M(G) be its coarse group:

The domain consists of (numbers encoding) the

Roelcke precompact open cosets in G.

Ternary relation “AB ⊆ C” on the domain.

R.p. open cosets approximate elements of G, so this ternary relation

approximates the binary group operation.

Each R.p. open subgroup of G is a finite union of double cosets of a basic open

subgroup. So ∃ only countably many such subgroups.

Using descriptive set theory, we can view the operator M as a Borel function

from locally R.p. groups to structures with domain N.
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Define an operation G reversing M:

from coarse groups to locally R.p. groups

Recall that M(G) is the coarse group of a locally R.p. G.

Let CG be the closure under isomorphism of the range of M,

among the structures on N with a ternary relation.

Write such a relation suggestively as “AB ⊑ C”.

Definition

Given a structure M ∈ CG, let G(M) be the closed subgroup of Sym(N)
consisting of the permutations p such that

AB ⊑ C ⇐⇒ p(A)B ⊑ p(C) for each A,B,C ∈ M .
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Recall that we have defined maps LRP
M ++

CG
G
ll .

Note that M and G forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

CG is a Borel class. M and G are Borel maps.

M and G are inverses up to isomorphism:

For each G ∈ LRP and each M ∈ CG,

G(M(G)) ∼=top G and M(G(M)) ∼= M .

As a consequence, for G0, G1 ∈ LRP and M0,M1 ∈ CG, we have

G0
∼=top G1 ⇐⇒ M(G0) ∼= M(G1)

M0
∼= M1 ⇐⇒ G(M0) ∼=top G(M1)

8 / 10



Recall that we have defined maps LRP
M ++

CG
G
ll .

Note that M and G forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

CG is a Borel class. M and G are Borel maps.

M and G are inverses up to isomorphism:

For each G ∈ LRP and each M ∈ CG,

G(M(G)) ∼=top G and M(G(M)) ∼= M .

As a consequence, for G0, G1 ∈ LRP and M0,M1 ∈ CG, we have

G0
∼=top G1 ⇐⇒ M(G0) ∼= M(G1)

M0
∼= M1 ⇐⇒ G(M0) ∼=top G(M1)

8 / 10



Recall that we have defined maps LRP
M ++

CG
G
ll .

Note that M and G forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

CG is a Borel class. M and G are Borel maps.

M and G are inverses up to isomorphism:

For each G ∈ LRP and each M ∈ CG,

G(M(G)) ∼=top G and M(G(M)) ∼= M .

As a consequence, for G0, G1 ∈ LRP and M0,M1 ∈ CG, we have

G0
∼=top G1 ⇐⇒ M(G0) ∼= M(G1)

M0
∼= M1 ⇐⇒ G(M0) ∼=top G(M1)

8 / 10



Recall that we have defined maps LRP
M ++

CG
G
ll .

Note that M and G forward-preserve (topological) isomorphism.

Theorem (Borel duality for l.R.p. groups)

CG is a Borel class. M and G are Borel maps.

M and G are inverses up to isomorphism:

For each G ∈ LRP and each M ∈ CG,

G(M(G)) ∼=top G and M(G(M)) ∼= M .

As a consequence, for G0, G1 ∈ LRP and M0,M1 ∈ CG, we have

G0
∼=top G1 ⇐⇒ M(G0) ∼= M(G1)

M0
∼= M1 ⇐⇒ G(M0) ∼=top G(M1)

8 / 10



The case of oligomorphic groups G

Note that G and hence each open subgroup is Roelcke precompact.

Theorem (NST, 21)

Among structures on N with a ternary relation symbol, let D be the

closure under isomorphism of {M(G) : G is oligomorphic}.
(a) The class D is Borel.

(b) ∼=top on the oligomorphic groups is Borel equivalent with the

isomorphism relation on D.

(a) is proved by a suitable axiomatisation of the class D using an

infinitary language;

(b) is obtained via Borel duality for oligomorphic groups:

introduce a modification Ĝ of the “reverse” Borel operator G so that

Ĝ(M) is oligomorphic for M ∈ D.
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A result of Hjorth and Kechris

The following will be used for showing that bi-interpretability on

ω-categorical structures is ≤B E∞ (a Borel equivalence relation with all

classes countable):

Theorem (Hjorth and Kechris, APAL 1997, Th. 3.8)

Let D be a Borel class of structures with domain N.

Suppose that ∼=D is potentially Fσ; that is, ∼=D ≤B L for some

Fσ equivalence relation L on some Polish space Y .

Then ∼=D ≤B E∞

In our setting D is the class of coarse groups above.

We will verify the hypothesis on D by showing that the relation of

bi-interpretability among ω-categorical structures is Fσ.
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