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Let M be a (classical) Fräıssé structure in a relational language (M
is countable and ultrahomogeneous).

Let A ∈ Age(M), i.e. A is isomorphic to a finite subset of M.

Then immediately from the definition of ultrahomogeneity, we have
that:

• for any two embeddings f , f ′ : A → M, there exists
h ∈ Aut(M) with hf = f ′;

• for any embedding f : A → M, every automorphism of A
extends under f to an automorphism of M.

Näıve question: what happens for infinite A?



Let’s look at M = the random graph.

Let A be a countable graph. Then there exists an embedding
f : A → M such that every element of Aut(A) extends under f
to an element of Aut(M):

We construct a countable graph Mω

by induction. Let M0 = A. Assuming Mi−1

has already been constructed, construct
Mi by taking Mi−1 and, for each finite
F ⊆fin.Mi−1, add a new vertex vF adjacent
to exactly F . Then let Mω =

⋃
i<ω Mi .

Each g ∈ Aut(A) extends to Aut(Mω)
(extend shell by shell). It is straightforward
to check that Mω satisfies the “witness
property” of the random graph, and therefore Mω

∼= M. We
therefore obtain the embedding f desired.

(In fact, here extension commutes with composition: we get a copy
of Aut(A) inside Aut(M) as a subgroup.)



This embedding had already been discovered by Henson in 1973!

Such an embedding f , giving a copy of Aut(A) as a subgroup
inside Aut(M) for all A ↪→ M, exists for:

• M having free amalgamation (Bilge & Melleray);

• M having a stationary independence relation (Müller).

The general machinery here is provided by Katětov functors
(Kubís, Mašulović).

Okay, so what now?

Question

Was this embedding f “the typical situation” or somehow “weird”?
What happens usually?



Let M be a Fräıssé structure with strong amalgamation, and let
A ↪→ M. Let Emb(A,M) be the set of embeddings of A into M.

We put a natural topology on Emb(A,M). Given:

• an embedding f0 : A0 → M of a finite subset A0 ⊆ A;

• a finite subset V0 ⊆ M with f0(A0) ∩ V0 = ∅;

specify a basic open set [f0,V0] by:

[f0,V0] = {f ∈ Emb(A,M) | f extends f0 and avoids V0}.



Emb(A,M) with this topology is a Polish space:

• Enumerate A as a0, a1, · · · and M as m0,m1, · · · .
• Given f , f ′ ∈ Emb(A,M).

• Let u be the least index such that f (au), f
′(au) differ, and let

v be the least index such that mv ∈ f (A)△ f ′(A).

• Define d(f , g) = 1
min(u,v) .

As Emb(A,M) is a Polish space, the notions of meagre &
comeagre behave well.

(Comeagre = common, meagre = uncommon, a subset can’t be
common AND uncommon.)

We say that a generic embedding has property P if

{f ∈ Emb(A,M) | f has property P}

is comeagre.



Let M be a Fräıssé structure with strong amalgamation and let
A ↪→ M.

Question

Are two embeddings A → M generically isomorphic? This
means: is {(f0, f1) ∈ Emb(A,M)2 | ∃ h ∈ Aut(M) with hf0 = f1}
comeagre?

Question

Let g ∈ Aut(A)∗. Is g generically extensible? This means:
is {f ∈ Emb(A,M) | g extends under f to an element of Aut(M)}
comeagre?

We have theorems giving clean characterisations for these two
questions in terms of the space of external types. Today we’ll focus
on the second question.



As an example, again take M = the random graph and A ↪→ M.
We will show that all g ∈ Aut(A)∗ are generically inextensible.

Fix g . We play the Banach-Mazur game on Emb(A,M):

• this is a two-player game;

• the players alternate, and each must give a non-empty open
set inside the previous open set given.

• If Player II can always ensure that the intersection of the open
sets played consists of embeddings f for which property P
holds, then P holds generically.

Here P is the property “g is inextensible under f”.

We may assume Player I and Player II play basic open sets [fi ,Vi ].



Zeroth turn:

• Player I plays [f0,V0]. (We write Ã0 = f0(A0).)

• Player II takes a1 ∈ supp g and embeds a1, ga1 in M to
produce f1 (if this hasn’t already been done). They then take

m ∈ M \ Ã0 with m ∼ ã1,m ̸∼ g̃a1, and place m in V1 ⊇ V0.
This ensures that m cannot be fixed in any automorphic
extension of g̃ .
Player II enumerates M \ {m} as m1,m2, · · · .



ith turn:

• Player I plays [f2t ,V2t ].

• Player II bans m 7→ mi in any automorphic extension of g̃ by
taking a ∈ A such that a, ga ̸∈ A2t , and then embedding a, ga
such that m ∼ ã, mi ̸∼ g̃a.

At the end of the game, m can’t be fixed in any automorphic
extension, and m can’t be sent to any mi . So no automorphic
extension exists!



For the triangle-free random graph, we also have that all
g ∈ Aut(A)∗ are generically inextensible. The proof is quite a
bit harder: when embedding ã ∼ m, we could accidentally make a
triangle.

To fix this, we essentially need to find finite edge-free sets inside A
that are not contained in any finite maximal edge-free set.

(Similar idea for the Kn-free random graph, where we also always
have g generically inextensible.)

Another example: linear orders. Here M = Q.

Proposition

Let M = Q, A ↪→ M, g ∈ Aut(A)∗.

• If supp g contains a dense interval of A, then g is generically
inextensible.

• If not, then g is generically extensible.



General results: consider the space of external (realised,
quantifier-free) types.

Let f ∈ Emb(A,M)
and let m̄ ∈ (M \ f (A))n. Then
we define tpf (m̄/A), the quantifier-free
type of m̄ over (A, f ), to be
the set of quantifier-free formulae with
parameters in A satisfied by m̄ in M.

(Here we consider M as an L(A)
structure by interpreting a ∈ A as f (a).)

Note that we only consider m̄ external to
f (A).

• We denote the set of external n-types by En.

• We denote the set of isolated external n-types by In. (We
mean isolated in En.)

• We refer to elements of In as approximately isolated types.



M a Fräıssé structure with strong amalgamation, A ↪→ M.

Theorem

• If for all n we have En = In, then pairs of embeddings A → M
are generically isomorphic.

• If not, then pairs of embeddings A → M are generically
non-isomorphic.

To characterise generic extensibility of g ∈ Aut(A)∗, we require a
new definition.



Definition

Let p(x̄) be an external n-type. We say that p(x̄) is losslessly
g-split if there exists a partition {1, · · · , n} = β ⊔ γ such that:

• p(xi : i ∈ β) is approximately isolated and p(xi : i ∈ γ) is
g -fixed;

• for any other external n-type q(x̄) with
q(xi : i ∈ β) = p(xi : i ∈ β) and q(xi : i ∈ γ) = p(xi : i ∈ γ),
we have that q(x̄) = p(x̄).

We then have the following theorem:



Theorem

Let M be a Fräıssé structure with strong amalgamation, let
A ↪→ M and let g ∈ Aut(A)∗.

• If all external types are losslessly g-split, then g is generically
extensible.

• Assume M has free amalgamation. If there exists an external
type which is not losslessly g-split, then g is generically
inextensible.

In the second statement, we can probably weaken free
amalgamation to just requiring some kind of canonical
amalgamation (a SWIR?): ongoing work.
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