On extending Cantor subsystems on dendrites

Jakub Tomaszewski

26.10.2023

joint work with Dominik Kwietniak and Piotr Oprocha

Jakub Tomaszewski

On extending Cantor subsystems on dendrites 1/15

In the following dynamics complexity hierachy

```
transitivity \leq mixing \leq exactness
```

exact maps of an interval, a circle¹ and topological graphs² can attain lower entropy than mixing maps.

Theorem (H-K-O)

Let T_k be a full binary tree of height k. For each $\epsilon > 0$ there exists an exact map $f_{\epsilon} \colon T_k \to T_k$ with $h_{top}(f_{\epsilon}) \leq \frac{\log 3}{2^n} + \epsilon$.

¹Grzegorz Harańczyk and Dominik Kwietniak. "When lower entropy implies stronger Devaney chaos". In: *Proc. Amer. Math. Soc.* 137.6 (2009), pp. 2063–2073. ²Grzegorz Harańczyk, Dominik Kwietniak, and Piotr Oprocha. "Topological structure and entropy of mixing graph maps". In: *Ergodic Theory Dynam. Systems* 34.5 (2014), pp. 1587–1614.

Definition

Gehman dendrite \mathcal{G} is the unique dendrite with each branching point of order 3 and the set of endpoints homeomorphic to the Cantor set.

Theorem (K-O-T)

Let $\epsilon > 0$. There exists a mixing map $F_{\epsilon} \colon \mathcal{G} \to \mathcal{G}$ with $h_{top}(F_{\epsilon}) \leq \epsilon$.

Corollary

The entropy paradox does not hold on dendrites.

▲ロト ▲聞と ▲限と ▲限と…

The challenge

Observation

Cantor systems naturally live in \mathcal{G} .

Question 1

Can we extend an endpoint subsystem of choice onto the whole dendrite?

Question 2

For which Cantor systems can we do that?

- 4 回 5 - 4 回 5 - 4 回 5

Definition

We say that a graph homomorphism $\phi: V_1 \to V_2$ between two graphs $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ is a (graph) cover if

$$old O$$
 ϕ is vertex-surjective: $\phi(V_1)=V_2$,

$$@ \phi is + directional: (x, y), (x, z) \in E_1 \implies \phi(y) = \phi(z).$$

Definition

For a sequence of graph covers $(G_i, \phi_i)_{i=0}^{\infty}$ define $C = C_{i} \phi_{i}^{\phi_0} C_{i} \phi_{i}^{\phi_1} C_{i} \phi_{i}^{\phi_2} C_{i} \phi_{i}^{\phi_3}$

$$V_{\rm G} = \{ (x_0, x_1, x_2, ...) \in \prod_{i=0}^{\infty} V_i \colon x_i = \phi_i(x_{i+1}) \text{ for } i \in \mathbb{N} \} \text{ and } E_{\rm G} = \{ (x, y) \in V_{\rm G} \times V_{\rm G} \colon (x_i, y_i) \in E_i \text{ for } i \in \mathbb{N} \}.$$

Approximation

Theorem (S)

The space $V_{\rm G}$ is a compact metrizable 0-dimensional space and $E_{\rm G}$ is a continuous map of $V_{\rm G}.$

Theorem (S)

Let (\mathcal{C}, f) be a surjective Cantor system. Then there exists a refining sequence of decompositions (\mathcal{U}_i) such that

- the sequence $(\mathcal{U}_1, f^{\mathcal{U}_1}) \xleftarrow{\phi_1} (\mathcal{U}_2, f^{\mathcal{U}_2}) \xleftarrow{\phi_1} \dots$, where $U \sim_{f^{\mathcal{U}}} V \iff f(U) \cap V \neq \emptyset$, of natural graph homomorphisms is a sequence of covers,
- 2 the inverse limit of this sequence of covers is conjugate to (X, f).

▲ロト ▲圖ト ▲恵ト ▲恵ト 三語

Shimomura tower

Theorem (S+T)

Let (C, f) be a surjective Cantor system and U_0 a decomposition of C. Then the following sequence

$$\mathbf{G} = (\mathcal{C}, (\mathcal{C}, \mathcal{C})) \xleftarrow{\phi_0} (\mathcal{U}_1, f^{\mathcal{U}_1}) \xleftarrow{\phi_1} (\mathcal{U}_2, f^{\mathcal{U}_2}) \xleftarrow{\phi_2} ...,$$

where each homomorphism ϕ_i is induced by the identity map on C and each decomposition U_{i+1} is a refinement of

$$f^{-1}(\mathcal{U}_i) \lor \mathcal{U}_i = \{U \cap V \colon \ U \in f^{-1}(\mathcal{U}_i), \ V \in \mathcal{U}_i\}$$

with $mesh(\mathcal{U}_i) \rightarrow 0$, approximates the dynamics of (\mathcal{C}, f) .

|本間を 本語を 本語を

Graph homomorphisms

We choose maps induced by $id: \mathcal{C} \to \mathcal{C}$.

Decompositions

We define $(\mathcal{U}_i)_{i=1}^{\infty}$ such that

- U_{i+1} is a refinement of U_i ∨ f⁻¹(U_i) [chosen graph homomorphisms are covers],
- 2 $mesh(U_i) \rightarrow 0$ [the system (V_G, E_G) approximates (C, f)],
- Seach U_i ∈ U_i is split into at least four different sets from U_{i+1} [secret tool for later].

▲目 > ▲檀 > ▲ 恵 > ▲ 恵 > …

Time to draw

Algorithm

- Start off on a level where you finished,
- Find such depth that each disintegration of previous set fits in the same subtree,
- Assign a branching point for each set.

Theorem

The dendrite S obtained by taking all infinite paths created by the algorithm is homeomorphic to G.

Algorithm

- Map branching points into dynamical ancestors,
- Stretch edges over between assigned endpoint images.

Theorem

The endpoint subsystem of (S, F) is conjugate to (C, f).

Jakub Tomaszewski

Algorithm

- Stretch nonsignificant edges over maximal tree between starting level and the image root,
- Stretch significant edges over all the related paths, exceeding the starting level.

Theorem

The modified map F_{mix} is mixing.

Theorem (N)

Let X, Y be compact metric spaces and $F_n: X \to 2^Y$ be a countable sequence of upper semicontinuous maps with

•
$$F^{n+1}(x) \subset F_n(x)$$
 for all $n \in \mathbb{N}$ and $x \in X$,

②
$$\lim_{n\to\infty} diam(F_n(x)) = 0$$
 for all $x \in X$,

•
$$F_n(X) = Y$$
 for all $n \in \mathbb{N}$.

Then the map $f: X \to Y$ defined by $f(x) = \bigcap_{n \in \mathbb{N}} F_n(x)$ for every $x \in X$ is continuous and onto.

⁴Sam B. Nadler Jr. *Continuum theory*. Vol. 158. Monographs and Textbooks in Pure and Applied Mathematics. An introduction. Marcel Dekker, <u>Inc.</u>, <u>New York</u>, <u>1992</u> <u>B</u> Soce

Jakub Tomaszewski

Algorithm

Recurrently map subintervals of the first edges into subdendrites, stretching them over level by level.

Theorem

The modified map F_{ex} is exact.

| 金属下 く居下

What we showed

Let (\mathcal{C}, f) be a surjective Cantor system. Then

- There exists a (U_i) cover setup in which the Shimomura tower can be constructed in a natural way,
- In this tower approximates well the action on the Cantor system,
- Following the above, there exists a way to define the dynamics on G in such a way that the endpoint subsystem is conjugate to (C, f),
- Without the change of the above property, the defined map can be made mixing,

Or even exact.

Thank you!

Jakub Tomaszewski

On extending Cantor subsystems on dendrites 15 / 15

▲日 ▶ ▲圖 ▶ ▲ 周 ▶ ★ 周 ▶

臣