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is completely observable, in the continuous case we must take D; = 0. There is also
a difference in the construction for F;. We may also remark that both in the con-
tinuous and in the discrete case we are not obliged to restrict ourselves to the minimal
number m of lag terms if that may be useful for other purposes. We would like to
point out that one of the main disadvantages of the results described is that we
suppose the control to take values in the same space as the state. We do not know
any results for the case where the control space has lower dimension. There is one
result known for the case where the derivatives are not used : namely we cannot realize
our goal with a scalar feedback of the form

m &,

u(t) = Z e x(t—jh).

It is not known if the same is true when we are allowed to use more general delay
feedback of the form

1]

u(r) = § dn(s)x(+s).
h

It is also not known whether the same negative answer is obtained by using
controls of the form u(t) = b*x(t—H) + c*x(t—h).
For the discrete-time case, as pointed out also by Charrier, it is not known

m
whether by using feedback of the form u, = JZ B, x,_j the minimal time / for which
=1

we may have Q*x, = 0, n > , is just 2k. For the same discrete case it is not known
whether degeneracy is impossible if we use only scalar controls.

It is thus seen that there are still many open questions connected with the simple
problem we have considered.
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Let M™ be an analytic n-dimensional manifold and & = {X*: « € 4} be a collection
of analytic tangent vector fields on M. A continuous map ¢: [0, T]—» M", T' > 0,
is called a solution of @ if there exists a partition 0 = ¢, < #; < ... < # = T such
that on each interval [t;, #1.,), ¢(t) = X™ ((p(t)) for some oy € 4. If M" = R* and
X*(x) =f(x, «), € A = R™, then studying solutions of & is equivalent to studying
solutions of X = f(x, «(¢)) where o is a piecewise constant control.

Let @* be a fixed (reference) solution of & with ¢*(0) = p and let (¢, p, 9)
denote the set of all points attainable at time ¢ by solutions of 2 initiating {from p
at time 0. We define: 2 is locally controllable along ¢* at p if for all ¢ > 0, p*(t)
eint L(t, p, D). Clearly, if @ is locally controllable along ¢* at p then ¢*(r)
eint (¢, p, D) for all t > 0 and cannot be a time optimal trajectory. Since the
Pontriagin maximum principle gives a necessary condition for ¢*(z) to belong to
the boundary of #/(t, p, D), it is of particular interest to study “singular cases™
(i.e., when the maximum principle gives no information; see [2] or [3].) For this
reason, and for ease of exposition, we confine our interest, mainly, to systems of
the form
) D = {X+a¥: -1 < a1}

with X, ¥ analytic vector fields on M?", and reference trajectory denoted T*(-)p,
the solution of % = X{(x), x(0) = p.

Consider the set, (M), of all analytic vector fields on M as a real Lie algebra
with product the Lie product denoted [X, Y]. For ¢ < V(M), let ©(%¥) denote
the smallest subalgebra containing €, let TM, denote the tangent space to M at p
and let €, = {X(p) e TM,: X €%}. We write (ad X, Y) =[X, Y], (ad* X, Y) =
[X, (ad*~1X, Y)]. Now define

P = {¥,(@d X, ¥), @d? X, ¥),...}.

It is known that rank &9 = n is a sufficient condition for 2 to be locally con-
trollable along T* at p. A necessary condition for local controllability of & along T
at p is that #(t, p, @) have nonempty interior for all ¢ > 0. Following [6], we let
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7'(2) denote the derived algebra of 7(9) and define vo(2) = ={¥, W: We v'(2)}.
Then Theorem 3.2 of [6] yields a necessary and sufficient condition that & (¢, p, 2)
have nonempty interior for all # > 0 is that dim 74(2) = n. An easy computation,
using the Jacobi identity for the Lie algebra, shows that with 2 as in (1), 74(2)
= 7(#°). In summary, a necessary condition for 2 to be locally controllable along
T* at p is that dim 7(#°), = n; a sufficient condition is that dimspan &% = n.
In {4], for certain two dimensional cases, the gap between necessary and sufficient
conditions was closed. Specifically, let

#* =Y, @d* ¥, X), (ad X, (ad? ¥, X)), (ad® X, (ad® ¥, X)), ...},
#? =¥, ad* Y, X), (ad X, (ad® Y, X)), (ad? X, (ad® ¥, X)), ...},

THEOREM 1 [4]. Let M be a two manifold; assume the necessary condition
dim 7(#°), = 2 and that X(p), Y(p) are linearly independent. Then there exists an
integer m > 0 such that dimspan &5 = 2. A necessary and sufficient condition that
2 be locally controllable along T at p is that the smallest such integer m be even.
(We consider m = 0 as even.)

This result may be viewed as a “local, infinite order” version of the maximum
principle. One may show that the first order cone of attainability at p* = T*(z,)p
used in the proof of the maximum principle, is span 9. Thus TX @p, 0 <1y,
is a singular arc for @ if dimspan &$x, < nfor0 < v < t,. In the two-dimensional
case, Theorem 1 can be used to obtain necessary and sufficient conditions that
a singular arc, T%, of an analytic control system of the form % = X| (X)+ Y(x)u(®),
—1 < u(t) < 1, be time optimal. Examples of the application of Theorem 1, together
with a quite complete sketch of its proof, can be found in [4]. We will next discuss
extensions of this theorem to higher dimensions.

Suppose X, Y are analytic and involutive (i.e., there exist scalar functions ay,
@z, a3 such that a; (%) X(x)+ax(x) Y(x)+as(x)[X, Y](x) = 0) tangent vector fields
on M". By the Frobenius theorem, all solutions of 7(2) through an initial point
P € M" lie on a two manifold M2, and Theorem 1 can be applied to 2 on M? Now
consider the #-dimensional analytic set of vector fields

& ={X—’ZalY‘: 1< o< 1}
=2 v

ete.

where we assume
(@) X(), Y*(p), ..., Y"(p) are lincarly independent.

(b) For some » & {2, ..., n}, X, ¥* are involutive.
Let :

F0 = {Y2% .., ¥, (@dX, ¥?), ..., adX, Y, (ad? X, Y2), ...},
Ft =2°0{@dY", X), (adX, (ad?Y", X)), (ad? X, (ad?Y", x), ..}
I =P 0l Y, X), (adX, (ad* ¥, X)), ...}, etc.

THEOREM 2. If there exists an integer m > O such that rank FY =n and if the
smallest such integer is even, the system is locally controllable along TX at p.
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The proof is easy; indeed assumption (a) implies rank &5 > n—1. If this rank
is n we have local controllability by the “first order” theory. Thus assume rank &}
= n—1 and that there is an integer m > 0 for which rank &% = n and the smallest
such m is even. This, together with assumption (b) and Theorem 1, means that the
system 9 = {X+aY": —1 < a, < 1} is locally controllable along T* relative to
M?, the two manifold of solutions of 7(2). Equivalently, for every 7 > 0, (7, p, D)
contains a full nbd. of p in M2. For notational ease, take v = 2, For g € (7, p, 9)
there exists a piecewise constant function a,(- ; ¢g): [0, ¥] —» [—1, 1] such that if ¢
is the solution of X = X(x)+a,(f; ¢) Y2(x), x(0) =p, then @(7) =g¢. Now let
®3, ..., %, be scalars in a nbd. of zero, g € #(7, p, D) and (7, o, ..., %, ) denote
the solution, at time 7, of % = X(x)+o,(r, @) Y2(¥)+ 3. a¥/(x), x(0) = p. Then

j=3

(7, 0,...,0,¢) = ¢ while for small zandj =3, ..., n, dp/du(z, 0,...,0, g) =
= t¥(p)+o(z). Since Y3(p), ..., Y"(p) are linearly independent and none belong
to TM3, the map y(v, - ): R" 3 x &(v, p, D) - M" covers a full neighbourhood
of p, completing the proof.

EXAMPLE 1. Let M = R3, p =0 and

8 i(xz—xa)2 0
X(x) ={i(x—x5) |, Y*x) = 1 , Y3 =l1].
| 1(x3—x3) -1 \ 1
Then .
"';'(xz‘“xs)z_
[X, Y?](x) = 1 » X Y%(x) =0,
-1
—(x—x3)?
(ad? X, Y?)(x) = 0
0

One may verify that rank {Y2(p), Y3(p), (2dX, Y?)(p), (adX, Y3)(p), ...} = 2 s0
the “first order theory” gives no information. Also (noting that the last two compo-
nents of X, Y2 and [X, Y] are negatives of each other) it easily follows that X, ¥
are involutive. Computation shows that rank &} = 2 however (ad®Y, X)(p) and
Y(p) are linearly independent (and both in TM?) hence rank &7 = 3. By Theorem 2,
we have local controllability along T* at p.

The purpose of these “special cases” given in Theorems 1 and 2 is to point the
way to a necessary and sufficient condition for local controllability of 2 (as given
by (1)) along T at p. This author has not been successful in extending the method
of proof of Theorem 1 to higher dimensional casés. Another possible approach is
as follows. Consider 2 in the form

@ ¥ =Xx)+u@®)Y(x), x©) =p,

Pick any admissible ; if one attempts to write a solution of (2) in the form T*(t)o
o(#, p) one finds, [1], that y must satisfy the (auxiliary) equation (3)

—1<u)< 1.
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¥ = u@® Y()—tu(t) @dX, ) ((0) +5t%u(t) (ad X, ¥) (3(®)) ...
with initial data y(0) = p. If (s, p) denotes the set of points attainable at time ¢
by solutions of (3) initiating from p at time O, then (¢, p, @) = TX()B(t, p).
Since, for fixed ¢ > 0, T* is a homeomorphism, p €int &(t, p, @) if and only if
p eint Z(t, p). One may thus study the (non-autonomous) equation (3).

We next discuss still another approach to the genmeral problem. Let ¢, > 0,
One may show that for each integer i = 0, 1,2, ..., there is an & > 0 and a C* map
Y (—e, &) = (1, p, D) such that 9'(0) = p and $(0) = (ad'X, ) (p). We next
follow ideas of Krener, [5], and recall that if y: (—e, &) = M, »(0) = p and $(0) =0
then #(0) & TM,. Precisely, for s > 0 if &(s) = 2y()'s) then lim Es) = $(0). If

& (t;, p, 2) has interior but p belongs to its boundary, the tangent space to (2, p, 9)
at p is a “half space” hence to obtain it, one must consider curves y through p with
#(0) = 0. One next must show that, say, if Y(p), [X, Y](p) are linearly dependent,
then there exists a map y: (—s, &) — &(¢, p, ) such that
y(0) =p, P(0) =0=aYP)+4[X,Y](p), while $(0) =0 =[¥, [X, ¥]](»).

One associates with each term of the form (ad*X, (ad"Y, X)) 'a coefficient s™ 7*+1,
where (k+ 1) indicates the number of times X appears in the product and m the num-
ber of times ¥ appears. (This parallels the proof of Theorem 1, [4].) It is possible,
therefore, that [Y, [X, Y]](p) and [¥, (ad*X, ¥)](p) (or [(ad™X, 1), (ad*X,Y)] (p))
are negatives of each other but this cannot occur with the same coefficient, i.e. the
first has coefficient s%7, the second s27* and if these are negatives of each other
k # 1. Using this approach (but with a full proof not completed at this time) it seems
one may obtain the following result for the general n-dimensional system (1).

Let #° = {Y, (adX, Y), (adX, Y), ...}; define &* to be the set of all products
of pairs of elements of ¥°; &2 to be the products of all three element subsets of $°
(repeated usage of an element possible) etc. Assume dim (£, =nso (1, p, D)
has nonempty interior for all > 0. Then a necessary and sufficient condition that
TX(t)p eint A (¢, p, D) for all t > 0 is that

. m . mi1
dlmspaniUo &} = dimspan | &}  for all even m.
= 1=0
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Consider the following functional differential equation

oy x(t) = L(t, x)+B(t)u(t)
where

Lt ¢) = { don(t, 6)p(6)
~h

and 7(t,0) is an nx#n matrix for 1, 6 € R which satisfies the regularity conditions
in [3]. In particular, § — %(z, 6), 6 € R is of bounded variation. The function ¢ - B(f),
t € R is continuous and B(t) is an nx m matrix for each ¢ € R. Just as in [1], [2] we
use X = WV ([—h, 0], R") as our state space, and % = L,([to, £:], R™), t; > to+h
as our admissible controllers. Given ¢ € X and u e %, there is a unique absolutely
continuous function t — x(¢) = x(, t,, @, u), t € [ty, 1,] satisfying (1) a.e. on [to, #;]
and the initial condition
@ Xyy = @y
where x,, € X stands for x,,(0) = x(t,+0), —h < 0 < 0. System (1) is controllable
on [to, t;] means that for each ¢, y € X there is a u € % such that
xq( "5 loy Ps u) =Y.
Systems (1) which are controllable were characterized in [2] as follows:
In order that (1) be controllable on [ty, t,], t, > to+h it is necessary and sufficient

that the following two conditions be satisfied:

(i) RankB(?) = na.e. on [t;—h, t{],

@) ¢t — B*(t) (B(t)B"'(t))'l, te[t,—h, t,] is essentially bounded,
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