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¥ = u@® Y()—tu(t) @dX, ) ((0) +5t%u(t) (ad X, ¥) (3(®)) ...
with initial data y(0) = p. If (s, p) denotes the set of points attainable at time ¢
by solutions of (3) initiating from p at time O, then (¢, p, @) = TX()B(t, p).
Since, for fixed ¢ > 0, T* is a homeomorphism, p €int &(t, p, @) if and only if
p eint Z(t, p). One may thus study the (non-autonomous) equation (3).

We next discuss still another approach to the genmeral problem. Let ¢, > 0,
One may show that for each integer i = 0, 1,2, ..., there is an & > 0 and a C* map
Y (—e, &) = (1, p, D) such that 9'(0) = p and $(0) = (ad'X, ) (p). We next
follow ideas of Krener, [5], and recall that if y: (—e, &) = M, »(0) = p and $(0) =0
then #(0) & TM,. Precisely, for s > 0 if &(s) = 2y()'s) then lim Es) = $(0). If

& (t;, p, 2) has interior but p belongs to its boundary, the tangent space to (2, p, 9)
at p is a “half space” hence to obtain it, one must consider curves y through p with
#(0) = 0. One next must show that, say, if Y(p), [X, Y](p) are linearly dependent,
then there exists a map y: (—s, &) — &(¢, p, ) such that
y(0) =p, P(0) =0=aYP)+4[X,Y](p), while $(0) =0 =[¥, [X, ¥]](»).

One associates with each term of the form (ad*X, (ad"Y, X)) 'a coefficient s™ 7*+1,
where (k+ 1) indicates the number of times X appears in the product and m the num-
ber of times ¥ appears. (This parallels the proof of Theorem 1, [4].) It is possible,
therefore, that [Y, [X, Y]](p) and [¥, (ad*X, ¥)](p) (or [(ad™X, 1), (ad*X,Y)] (p))
are negatives of each other but this cannot occur with the same coefficient, i.e. the
first has coefficient s%7, the second s27* and if these are negatives of each other
k # 1. Using this approach (but with a full proof not completed at this time) it seems
one may obtain the following result for the general n-dimensional system (1).

Let #° = {Y, (adX, Y), (adX, Y), ...}; define &* to be the set of all products
of pairs of elements of ¥°; &2 to be the products of all three element subsets of $°
(repeated usage of an element possible) etc. Assume dim (£, =nso (1, p, D)
has nonempty interior for all > 0. Then a necessary and sufficient condition that
TX(t)p eint A (¢, p, D) for all t > 0 is that

. m . mi1
dlmspaniUo &} = dimspan | &}  for all even m.
= 1=0
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Consider the following functional differential equation

oy x(t) = L(t, x)+B(t)u(t)
where

Lt ¢) = { don(t, 6)p(6)
~h

and 7(t,0) is an nx#n matrix for 1, 6 € R which satisfies the regularity conditions
in [3]. In particular, § — %(z, 6), 6 € R is of bounded variation. The function ¢ - B(f),
t € R is continuous and B(t) is an nx m matrix for each ¢ € R. Just as in [1], [2] we
use X = WV ([—h, 0], R") as our state space, and % = L,([to, £:], R™), t; > to+h
as our admissible controllers. Given ¢ € X and u e %, there is a unique absolutely
continuous function t — x(¢) = x(, t,, @, u), t € [ty, 1,] satisfying (1) a.e. on [to, #;]
and the initial condition
@ Xyy = @y
where x,, € X stands for x,,(0) = x(t,+0), —h < 0 < 0. System (1) is controllable
on [to, t;] means that for each ¢, y € X there is a u € % such that
xq( "5 loy Ps u) =Y.
Systems (1) which are controllable were characterized in [2] as follows:
In order that (1) be controllable on [ty, t,], t, > to+h it is necessary and sufficient

that the following two conditions be satisfied:

(i) RankB(?) = na.e. on [t;—h, t{],

@) ¢t — B*(t) (B(t)B"'(t))'l, te[t,—h, t,] is essentially bounded,

* Thisresearch was supported by the National Science Foundation under Grant No. GP-33882.
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This shows that controllability will often be too restrictive an assumption in
many physical problems. It was shown in [1], [4] that much of what a controlla-
bility hypothesis achieves in an optimal control problem can be accomplished equally
well if one can merely establish that the attainable set

Ao, ts, p) = {weX| v =x,,t, ¢ u) for some uec¥}

is closed in X. In [2] it was shown that if & (o, 11, @) is closed, then the generalized
(or Moore—Penrose) inverse of B(t) (see [6] for the definition) defines a function
t— BY(t), tel[t,—ht,] which is essentially bounded on [t,—h,t]. This is not,
however, sufficient to assure & (to, ;, @) is closed (see [2] for an example). A partial
converse is possible. Let
. n(t,0), 0 #0,
7t 0) = { N
7n(,07), 8 =0.
Then if one makes the added assumption that
Im #(t, 0) < Im B(t)

for a.e. t‘e [ti—h, 1], and each 6 € {—h, 0], it was shown in [2] that 2Z(to, 2,, @)
is closed in X. A. Olbrot (%) and S. Kurcyusz have recently obtained necessary and
sufficient conditions for the attainable set <#(to, t;, ) of the system

3 *(t) = Ao(t)x(t)+ A, (t) x(t —hy+B(Hu(t)
to be closed in X. In case dy, 4y, B do not depend on ¢, their results state that
A (ty, t1, @) is closed in X if and only if

Im(4,45B) cIm(B), k=0,1,...,n—1.

In the. Present paper we will show that for neutral systems an assumption of
co.ntrollabmty is more reasonable than in the retarded case mentioned above. We
will confine our attention here to the special two dimensional system (n = 2)

4) X(t) = A_ %(t—B)+Aox(t)+ A, x(t — h)+ Bu(t)
where
o B b
A = [ o= = !
! [7’1 &,]’ P=1h0 B= [b:]

and u is a scalar control. Controllability turns out to be a gereric property of systems
(4) in the sense that systems which are controllable form an open dense subset of
all such systems, cf. [5]. We shall only sketch the proofs of the main propositions.
Complete proofs for the general n-dimensional case will be published elsewhere.
The analysis is based on methods developed. in [2], [7].

Write (4) in the operational form

®) QD, $)x .= Bu

(*) This was communicated to us in a special evenin, i
. € : g seminar at the Zakopane Conference
Optimal Control, cf. [4]. i nerence o

icm
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where
QWD S) =L, D—A.DS—A4y—A4, S

and operators D and § are defined by
(Dx) () = %(2), (Sx) (1) = x(t—h).

Since (4) is autonomous, we can assume #, = 0, and discuss controllability on the
interval J = [0, ¢,], ¢t; > 2h.

Observe that (4) is controllable on J if and only if
O] A0, 1,,0) =X,
Thus the initial data in (4) or (5) can be taken to be the zero function without any
loss of generality, and we abbreviate x(z, 0, 0, ) by x(¢, u). For this reason it will
be convenient to have the following notation:
W8 (7, R?) = {x: (=00, 7] = R?| x(f) =0, 1 < 0, x* Ve C((— o0, 7]), *®| [0, 7]e L},
k=0,1,2,..,7>0,and %, = W, R) is the set of admissible controllers.

Treating D and S formally as scalar multipliers we can define the 2 x 2 operator
matrices

@ P(D, S) = adj @(D, §) = Po(D)}+P1(D)S,

K(D) = [Po(D)B, P,(D)B],

where adj 4 denotes the transposed matrix of cofactors.
In fact, since 4 + adjd is linear on the space of 2x2 matrices (this is false
for higher dimensions) Po(D), P,(D) are readily seen to be

® Po(D) = DI,—adj Ay, P,(D) = —[adj4;+DadjA4_,].
Hence K(D) in (7) can be written as
)] K(D) = [B, —(adj A-,) B]1D—[(adj 40) B, (adj 4,) B]

= Cy[—adj 4_,, BID—[(adj 4¢) B, (adj 4,) B]
where we have used the notation C,[4, B] for the controllability matrix [B, AB].
When we specialize Theorem 5.2 of [2] to the present situation in (4) we get

following result.
Let t, > 2h, yeX. There is a ue W(ty, R) such that

(10) X, (o u) =y

if and only if there is an w € W ([t,—h, t,], R?) such that
(11 [K(D)w](t) = pt—1), H—h<t<t,
and

(12 w(t —h) = wa(t),  @L(t—h) = dy(t),

o = [w,0]*
Taking advantage of the expression (9) for the operator K(D) we write (11)
in the form

(13) Cl—adj A_,, Blo(f)— [(adj 40) B, (adj A1) Ble(r) = p(i—11),


GUEST


icm®

110 M. Q. JACOBS and C.E. LANGENHOP

ti—h < t < t;. Therefore if (6) is to be satisfied, then (13) has a solution we
W ([t; —h, t,], R*)for every y € X = WV ([—h, 0], R*). Clearly, this implies that

(14) Rank C;[~adj4_,, B] = 2.
One can then verify that (14) is satisfied if and only if

(15) Rank C,[4.,, B] = 2.

Now define

H0, 1, 9)(O) = {xeR?| x = p(0) for some pe A0, 1, 9)}, —h<0<0.
Clearly, (6) implies that
(16) (0, 1,0)(—h) = R

One might expect that (15) and (16) would imply (6). However, this turns out to be
false. Indeed, if B, # 0, and B = [0, 1]*, then the ordinary differential equation
J(t) = 4oy(t)+Bu(t)
is controllable. By Remark 3.3 of [1], this implies (16). Thus, if f, # 0, f_, # 0,
then both (16) and (15) are true when B = [0, 1]*. The results given below can be
used to show thatifa_y = ap =, =0,8_; =, =1, f; = —1, and B = [0, 1]*,

then (6) is false although both (15) and (16) are true.

We shall now indicate how the operational methods developed in [2] can be
used to establish precisely the conditions that are both necessary and sufficient for
(4) to be controllable on [0, #,], ¢, > 2.

Define the following matrices

. [o 0 1 .
aun B= [1]’ 4= [_detA_l tl'A_]_]’ F=Cy[4-,,B], H= CZ[A-’B]‘
If (15) is true then the change of variable x = FH~! y in (4) leads to the system
(8 0 = A_ i3t~ + Aoy(@)+ A y(e— 1)+ Bu(t)

where A; = HF*A,FH™, i = %1,0, and in particular A~_1 = /. The matrices
Ay, 1 =0, 1, will be denoted by

" & B

“d, = [,‘ ﬂf] i=0,1.
Pi &

Since (6) implies (15), it suffices for us to consider only the necessary and sufficient
couditions for the controllability of (18).Now replace 4,, i = +1,0, Bin (1.13) with A~;
and B, respectively, and write the resulting equation in the following equivalent form:
19 a(t) = Ao®)+§(),
where

L-h<t<ty,

A =[C,l~adj d_,, B! [(adj 4o) B, (adj 4)) ],

(20) Y1) =[Col-adj A, Bl *p(t—1,), t,-h<t<t,.
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The variation of constants formula gives

t
e @) =et [e“‘“l"‘)w(tl—-h)-%- { e"“a’i;(s)ds], L—h<t< 1y,

t—h

whereas the two boundary conditions in (12) require that

(22) e [IIixt,) — o(ty = M) = et w(t)—w(t;,—h)] =0,
where e¥ = [1, 0], and

01
10
Using (21) the boundary conditions in (22) state that the equations

I = [ ] = C,[—adjd_,, B].

i
(23 ot [(IIe""—Iz)Aco(tl —R)+IT(t:) — (e — ) +1Tdes e“’i;')(s)ds]
ty=h
g
= e¥f [(He"’-—[z)w(tl-—h)+f!e"'* S e“"'f])(s)ds] =0
tyh
must have a solution for arbitrary § of the form (20). Consequently, one can show
that (18) is controllable on the interval J if and only if the matrix

_ ef (et —~1) A
= ef([Ie*— 1)
has rank 2. If we compute 4 in equation (20) we get

(24)

A = I[(adj A)B, (adj 4) B] =

and
(25) P(A) = det(d—A,) = (A— o) (A+ F)+5:fo

is the characteristic polynomial of 4.
Let 4;, i = 1,2, denote the characteristic roots of 4. Then one readily checks
that

@) et = L [eMhadi (b Iy — )~ e (ln Ty~ A),
(26) 1 2

(b) et = ML +hadi (A L~ A,
Now the matrix G in (24) is given by

—_ &0 &1 — 50 E 1 ARl

@ o= [0 )-[r B]e
Thus (18) is controllable on J if and only if
(28) : det G # 0,

}'1 7* )'2:

A= A,
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where G is given by (27). In order to put these cgnditions in simpler form it is con-
venient to consider two cases: (i) f, =0, (i) fo # 0.

In case (ii) one examines the two possibilities, 4, # A,, 4, = A,. We shall just
state the results of our calculations. In case /570 =0 we get

29) det G = —[&;, + (&o+ ﬁl)e-gﬂh]'
In the event f, # 0 we get that

30) det G = —E(A,)E(4,)/ Bo,
where

(31) E()l) = A+ ﬁl o Eo el’z'

Hence (18) is controllable on J = [0, t,], t, > 2h, if and only if one of the following
conditions is satisfied:

(2 @ o =0 and o+ f,+&, e # 0; ‘
(i) fo # 0 and E(A)E(A) # O where 4, i=1,2, are the roots of
A2 4 (By — o) A+ 8y fo— 8o fy = 0.
Thus the original system (4) is controllable on the interval [0, t,], t, > 2h, if and only
if Rank Cy[A. 1, B] = 2and one of the conditions (32) (i) or (ii) holds for the correspond-
ing system (18) which is connected with (4) by means of the transformation x = FH™'y
where F, H are as in (17). )

If we consider the class & of all matrices [4.,, Ay, Ay, B] where 4;,i = +1,0
and B are respectively 2 x2 and 2 x 1 real matrices with a convenient matrix norm,
then it is well known that the subset &., of & which satisfy (15) is open and dense
in &. Simple continuity considerations and (32) show that the subset &, of all
[A_1, Ao, A1, B] € & .., where the corresponding system (18) is controllable is open
in &.. The condition in (1.32) (ii) can be used to establish that &, is dense in ..
and thus in &.

In closing we mention that the same operational methods can be used to charac-
terize two-dimensional null controllable (cf. [8]) retarded systems (4., = 0)

(33) X(t) = Aox(t)+ A, x(t—h)+Bu(t)

(i.e., systems where 0 € (0, ,, @) for every p e X, ¢, > 2h). Without loss of gener-
ality we can assume B = [0, 1]*, Define the 2 x 2 matrix 4 by the equation

%o oy
A = .
) [ —Bo — 51]
Then (33) is mull controllable on [0, t,], t; > 2k if and only if one of the following
conditions is satisfied:

(@) B, =0and g, #0,

(EL) N
(i) By # O and By+ B, expldet 4/8;]h # 0.
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