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Introduction

The aim of this paper is to give an example of identification of kinetic parameters
in a biochemical system (called the “model case”). For proofs, further details and
other examples, we refer to Joly [4], [5], [6]. Other systems are described (a system
with hysteresis and a system with oscillations). Many other enzyme artificial systems
are described in Kernevez et al. [7], and numerical and experimental results are
compared.

For artificial enzyme membranes, owing to the well-defined context, it is possible
to write in a simple way equations ruling the systems and to compare calculated
and experimental results. This work is also a stage between classical enzymology
in solution and the study of properties of enzymes in very complex distributed bio-
logical systems.

These problems were originally raised by a team of biochemists (ERA 338 CNRS,
Laboratoire d’Enzymologie Médicale, Université de Technologie de Compidgne)
lead by Dr. D. Thomas.

The plan is as follows:

§ 1. Description of the model case.

§ 2. Identification of parameters in the model case.

§3. An example of hysteresis.

§4. An example of oscillation.

Notations
s(x, t) = concentration of substrate at point x and at time ¢ (0 < x < 1).
s(x) = concentration of substrate at point x (in steady state).
F(s) = os/(1+]s} +as?).
h and k are the space and time steps: Jh = 1, Nk = T.
s] = approximation of s(jh, nk).

o (115)
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1. Description of the model case

An enzyme E is homogeneously distributed inside an artificial membrane (thickness e),
The membrane is immersed in a solution of substrate S, the reference axis is chosen
perpendicular to the membrane. Obviously the S concentration is a function of
space and time (x and f).

For each x, 9[S}/0t is linked to enzyme reaction and metabolite diffusion

als] 28] . [s]

.0 o P ma Vg
Dg being substrate diffusion coefficient, Ky the Michaelis constant and V) the
maximum activity by volume unit of the membrane.
t

X . .
Let us replace - by x and- by ¢. x and ¢ are now dimensionless.

¢*[Dg
Ky is chosen as the concentration unit and equation (1.1) can be written as
0s 0% K
1.2), —_— - — =
(12 o o oS 0
with
. Vi e?
1.3 =M
(1.3 =g D

obviously, o is a perfect characterization of the membrane system.
The boundary conditions are:

The concentration at the membrane boundaries is constant (Dirichlet condi-
tions)

sy 50,6) =s(l,t) =a (23 0).
Initial conditions:

‘(1.5). 5(x,00 =0, O0<x<l1,

or

(1.6) ‘ s(x, 0) =0, Vx.

2. Identification of parameters in the model case

Examples of optimal control of such biochemical systems have already been given by
Kernevez (1972), (1973), Brauner et al. [1], [2], Kernevez et al. [7], [8], and Yvon [15].
In this paper we give an example of identification of parameters which is de-
pendent on the same tschnique, i.6., we have to minimize some cost function, to do
that we use a gradient method, and to get the gradient we use an adjoint state.

2.1. Description of the problem
The (steady) state of the system is defined by
i ds s
- +o(x
@1 dx2 ( ) T+s
5(0) =a, s(1) =a,
where v(x) is proportional to the concentration of the enzyme at point x.

-=0, O0<x<l,
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v is an unknown function of x in
2.2) Uy = {v| v€ L*(0,1) and 0 < v < M},

M being some positive constant. !
Let oy (f =1, ..., N) be N choices of the boundary concentrations of the sub-

strate. : . i

We shall call s,(x; v) the solution of (2.1) for the function v and for o = o;.
We observe the fluxes z; of the substrate entering the membrane at x = 0 and

x = 1 for the different values of i (i =1, ..., N):

2.3) observation = z; (i =1, 2, ..., N),
and we define the cost function

Mz

2.4 J@) = %

___Md’*;;" ©) (0)-zi} :

1
The problem is to find a u such that
(2.5) Jw) < J(v) VoEWU,,.

2.2. Lagrangian, adjoint state and gradient

G. Joly ([4], [5]) shows that this problem has at least one solution and gives
a justification for the following formal instructions to find a solution.
First step: Define the Lagrangian

N 2 N 2
26 £ (v sp) =%Z‘ o O +%Z % M)-z +
Iy d?s, Si
+ Spi(——d;i— +v(x)m)dx
i=1 0
where v, s = (s, ..., 8y) and p = (p,, ..., py) are independent and such that
@7 v ey,
28) s—ae Hy(Q) nH* (@) (2 =10,1),
2.9) pi e L*(9).
Second step: For every s define a p such that
(2.10) ~%S§- =0,

@11) (———?;C‘-(O)—z,)(—~%(O))+(%(l)—zi)(—%(1))+

1 2 :
(-G o) =0 WeR@or®,
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which is equivalent to

d z +v(x) (1 jsi)z Di = 0:
2.12) s s i=1,2,..,N),
pi(0) = I ©~z, p) =a‘(1)"21
Third step: We know that
(2.13) J(@) = £ (v,5(v),p) Vp,

oz o \_ (o2
37 Al W ey el el W e
if we choose p as indicated in (2.12). (p is an arbitrary function in L2(2) and (f, g)
denotes S S g(x)dx.)

2

ey (Tene) = (_aa_?

N 1
@15) '@, 9) = '“ S PP () 3 d.
2.3. Numerical method
We work with the discrete Lagra.ngian
N 2
Q1) P = % Si,o—S11 Z S0~ Si ST
i=1 i=1

J-1

N
§ :}" SigertSiy-1 =28, 81,5
h - L+l ,
+ Pl.j( 72 +y T+,

=1 J=1

which corresponds to the discrete state

Si,g41+81,5-1—28;,4 81,5

- = +9, — =0
@17 . " Ity
Si,0= 04y S,y = Oy,

to the discrete adjoint state

41 FPL -1 2D, 1
— p;l; — +vl(1+s: Y2 o= 0,
(2.18) o ¥ S
- P
pro = BT gy, o ST

and to the gradient

2.19
@19) 6'01 hZPU 1+s,j

The algorithm is the steepest descent method.
Numerical results are given in Fig. 1.
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Fig. 1
1: initial guess for the function ¥y (x); 2: estimate after 1 iteration; 3: after 2 iterations there is
almost superposition with the optimal curve.

3. An example of hysteresis

The only difference with respect to the “model case™ (but of great importance for
the behaviour of the system) is that in equation (1.1) the term denoting reaction must
be changed into

sy

3.1 ' Vg ——
Ky + S+ —— [S]

This means that there is inhibition by excess of the substrate, and equations
(1.2), (1.4), (1.5) and (1.6) must be replaced by

as 52
-ET—AS-FO'F(S) =0 (A —-—é;c?-),
(3.2)

Slp=o, Sltmo =0 or o,
F(s) = s/(1+]s]+as?),
where ¢ has the same meaning as in (1.3) and

= Kn
(3.3) . a = -I{—ss—.

We are interested also in the steady states

—Ads+oF(s) =0,
(34) {S,I‘ = O
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and in the quasi steady states, i.e., an evolution of the steady states:

—As+oF(s) =0,
@) {3|p = o).

Now, for systems (3.2) and (3.4) we have the following existence theorems,
using monotone methods as indicated in Sattinger (1972):

up = a (resp. o = 0) is an upper (resp. lower) solution of (3.2):

—duy+0Fluy) = 0,
—Avy+0F(v,) =0,

3.6) { tolr = «,
Uplr < .
Then we have the following results from Sattinger [13]:
() There exists a regular solution s of (3.4) such that Vo € 8K U

(i) Moreover, for any continuous (%) with ve(x) < @(x) < uo(x) we obtain a
global regular solution of the initial value problem (3.2) with initial data ¢, and the
solution s(x, t) satisfies 0'= v,(x) < 5(x, 1) < up(¥) = a.

It is possible to prove (Kernevez et al. [9]) that (3.4) admits more than one so-
lution if o and « are suitably chosen.

/e

a=70=g,+g

Fig. 2

IDENTIFICATION OF KINETIC PARAMETERS 121
®

The flux of the substrate entering the membrane under quasi-stationary state
conditions has been calculated as a function of the external substrate concentration
for increasing and decreasing values (Fig. 2).

In Fig. 2 there is evidence for hysteresis phenomenon: the activity substrate
concentration relationship does not give a‘unique curve. For increasing substrate
concentration values after a critical point there is a strong drop of the enzyme acti-
vity. For decreasing values a similar effect is observed. The low and high activity
values correspond respectively to high and low concentration profiles of the sub-
strate inside the membrane (Fig. 3). Two families of curves are given in Fig. 3, show-
ing the strong variation of the concentration level for each critical point. The nu-
merical results are similar to the experimental results presented by Naparstek et
al. [12].
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Fig. 3

4. An example of oscillation

The system was experimentally built and studied inm Harvard by Naparstek et al.
[12] and a numerical analysis was given by Naparstek et al. [3]. A coating (thickness
L) bearing an enzyme activity is along a glass electrode. One side of the coating is
impermeable to any molecule.

In this system, H* is a product with a concentration p ([S] = 5) and due to the
reaction between H* and OH~ a function a(x,t) is introduced in the equation
ruling the system.
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2
@.1) —Zf——ns%;—w(s,p) =0, 0O<x<L,
da %a
(4.2) W—‘DH '5}2—“'17(5.',}’) =0,
10-20
4.3 a=p— ’
4.3 P
E
4.4) Fs,p) = 0205 05 5 10-%
Qa+Qs+05
(4-5) Q; = 64’510-11,49 »
14+1072%p + = — %
4

@6 = 202

) Qs 1+106.92p ?
4.7 Dg =0,13-10"5, Dy =0,64-10"% L =10"2.

Boundary conditions:
(4.8) 5(0,2) = 5,5-10"7;  p(0,1) = 10~13,

os op

4.9 — = =
@9 L =L@ =0.

Initial conditions:
(4.10) s(x,0) =55-10"7; p(x, 0) = 10-13,

The existence and unicity of solution for equations (4.1)~(4.10) can be proved
by standard methods (Lions [10]): construction of a sequence of Faedo Galerkin
approximations, ‘a priori estimates on these approximations, a priori estimates on
the time fractionary derivatives, using the Fourier transform with respect to time,
and extraction of a subsequence converging towards a solution of (4.1)-(4.10).
The property used in demonstrating the existence is mainly the boundedness of the
function F. The unicity proof uses the fact that F is Lipschitz continuous.

The system described by the equations (4.1) to (4.10) was solved numerically
by Naparstek et al. [11]. A periodic behaviour for the system was shown and a sharp
front of the substrate concentration in the activelayer oscillates between the bound-
aries ruled, respectively, by Dirichlet and Neumann conditions.

There is a qualitative agreement between the simulation of Naparstek et al.
([11], [12]) and the experimental results of Naparstek et al. [11].

Conclusion

An example of identification of a function appearing as a coefficient in the (non-
linear) P.D.E. describing the “model case” has been given. References for optimal
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control problems related to such biochemical systems have been indicated. Two
more examples of biochemical systems have been shown, as an indication of the wide
area opened to the applied mathematician in the field of artificial enzyme membranes.
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