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Many proofs of optimal solutions for a real functional J(x) on a set X are based
on the generalized theorem of Weierstrass. It states that, with a given topology of X,
Min J(x) exists if J(x) is a lower semicontinuous functional and X is a closed and
x6X

compact set. What can we do—especially in the theory of optimal control pro-
blems—if some assumptions of this theorem are not fulfilled ? One method is, roughty
speaking, the following: with respect to the given minimization problem we construct
another “similar problem”, prove the existence of optimal solutions of that, and hence
conclude, if possible, the existence of solutions of the first problem. For the con-
struction of “similar problems” it is very useful to have the concept of variational
pairs and its extension in the sense of A. D. Joffe and W. M. Tichomirov [8], published
1968. These authors characterize, for a given Hausdorff space X and a real functional
J(x) defined on X, the computation of in£ J(x) by the so-called variational pair (X, J).
X€E

A variational pair (Y, J*) is called an extension of (X, J) if there exists a continuous
map i: X — Y satisfying the following conditions:
(i) i(X)is dense in ¥,
(i) Jx) = J*((x)) VxeX.
(iii) For every neighbourhood V of each point y € ¥ we have

inf J(¥) < J*(). ()
=Xy

These properties imply immediately inf /(x) = inf J*(y). Moreover, we easily obtain
xeX " yeY

the fact that y, = i(x,) is a (local) minimal point of the variational pair (Y, J*)

if x, is a (local) minimal point of the variational pair (X, J). On the other hand, we

do not generally know the existence of MinJ(x) if MinJ*(y) exists. However, it
xeX yeY

is often possible to get sufficient conditions for the existence of MinJ(x) by starting
xeX
from the existence of MinJ*(y). For example, this method is usual for finding strong
rey

(%) i=*(¥) denotes the set of all x € X with i(x) < V.
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solutions of variational problems in Sobolev spaces through the knowledge of weak
solutions.

Special-constructions of extensions at (X, J) have already been given for varia-
tional problems with simple integrals by N. N. Bogoljubov 1930, L. C. Young 1937
and E. J. McShane 1940 (see the references of [8]). In the last few years these ideas
have been rediscovered and further developed for more general problems of optimiza-
tion in the sense of optimal control problems. Important papers on them have been
published not only by Joffe and Tichomirov [8] but also by R. W. Gamkrelidze
1962, J. Warga 1962, W. F. Krotov 1960, A. D. Joffe [7], J. Ekeland [6], H. Berliocchi
and J. M. Lasry [3], and by V. Amdursky [1]. (*)

Here and henceforward we use the construction of extensions in the sense of
Bogoljubov, Joffe and Tichomirov. We study the optimal control problem

6N e, u) = { £(t, x, u)dt - Min

G
among all state functions x(t) = (x*, ..., x") € W}(G) and control functions u(z)
= (@, ..., ") € L(G) (v > m), where the vector-valued variable ¢ = (¢, ..., ") e G
and Gis a bounded Lipschitz domain of R™. Besides, x(¢) shall satisfy the side condi-
tions x, = g(z, x, ) a.e. on G, the boundary condition x|;; = @(¢) and the inclusion

u(@®) e U = {u(t) e L(G)| u(¥) eV < R'}.

We assume that f, g € C(Gx R*x R, p(t) € C*(8G) and that ¥ is a closed nonvoid
compact subset of R'. We denote by W, the set of all admissible pairs {x(z), u(t))
(“processes” of (1)).
Then we construct for fixed ¢ and x the set B(f, x) = Uyg(t, x, v). Since g
vEé

characterizes a continuous map (G x R"x R"> - R* with » = m-n, it is evident
that B(t, x) is a closed and compact subset of R* for fixed ¢ and x. Moreover, we
compute the new integrand

filt, x, & = Mi’];'l [, x,v) VE&eB(@,x).

§=g(t,%,0)

Since Vo(t,x, &) = {veV| & =g(t, x,v)} is a closed and compact subset of R*
and f is continuous, f(t, x, £) exists .everywhere. It is easy to see that fi(t, x, £)
is lower semicontinuous with respect to the whole argument ¢, x, £>,

Then problem (1) is equivalent (%) to the problem

® Ji(x) = Sf;(t, X, X)dt - Min on U,

G

(*) See also the relevant lectures by J. M. Lasry at the Banach Center in Warsaw 1973, and by
H. Berliocchi and by G. S. Goodman at this conference.

(*) This means that: If {Xo, #o} is an optimal process of (1), then x, is an optimal solution
of (2). Conversely, if X, is an optimal solution of (2), there exists a corresponding control function
o, SO that {xo, uo) is an optimal process of (1).

EXISTENCE OF OPTIMAL PROCESSES 127

with

W, = {x(t) = (x, ..., x") e WHO)| x,(t) e Bz, x(1)) on G, x|, = @()}.

Problem (2) represented an ulterior example for an extension of the variational
pair to problem (1) with the map i(x, u) = x as a projection.

Furthermore, we introduce the closed domain A(f, x) = coB(r, x) < R* and
the function f,(Z, x, ) by the optimal problem

falt, x,m) = sup {a+ G, M} Vnedx)
with
Q= {(a, by e R* x R a+(b, &) < fi(t, x, £) V& e B(t, x)}.

The function f, is called the support-function of f;. The equation z = f,(t, x, 1)
characterizes for fixed {z, x> the lower boundary of the convex hull of the epigraph

epi(fy) = {K& 2> e R**Y| Ee B, %), z = f1(t, %, )}

The function f,(2, x, 1) is a convex function of 5 € A(¢, x) for fixed (¢, x> and
a lower semicontinuous function of ¢ and x (see e.g. [12], § 4). Joffe and Tichomirov
have proved in their paper cited above that the variational problem

A3) Tox) = £2(t, %, x)dt ~ Min on 2,
G
with
Ay = {x(t) € W} G)| Xgg = @(t), X, € A(t’ x(t))}

characterizes an extended variational pair of (1) resp. (2) if the following condition

holds:

(4) For any admissible state function x(t) of (1) and a sequence of vector-valued func-
tions £,(t) = g(1, x(t), m(t)) with w(t) € U satisfying & — x, in L,(G) there is
a sequence of processes of (1) {Zy, iy with the property ||Zx—x|lcey = O,
”uk"'ﬁk”l.v(o) = 0.

Certainly, this functional-analytical condition (4) is very useful, but it does not

guarantee the existence of the minimum of our primary problem (1). Besides, it is

generally (especially for m > 1) very difficult to prove and to establish this condition

(4). Therefore, we shall try another way of securing the existence of l\glin.lz(x) and

2

the validity of the equation MinJ,(x) = MinJ(x, u). To this end we shall use some
Az Ao

generalizations of the investigation carried out by R. Kldtzler [9] and A. Angelus [2]

concerning irregular variational problems.

HypoTHESIS 1. Problem (3) has a solution x,(t).

By modifying the general existence theorems of L. Cesari [5] and C. Olech [11]
we can guarantee this hypothesis if the assumptions of the following two lemmas
are fulfilled.
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LeMMA 1. There are comstants C, D = 0 such that
lg@t, x, )| < C+Dlx| VweV.

Then N, is a weak compact and closed subset of W;(G) for v > m.

LEMMA 2. We assume that W, = @ and that for all ne A(t, x) there exists
a supporting plane z = (a(t, %), [E—n))+/2(t X, m) of the epigraph epi(f)
= {(§ 2> e R £ A(t, %), 2 = folt, x, £)} having measurable coefficients a,(t, x)
as the components of the vector u(t, x). Besides we suppose that there is a function
M(t) € L(G) (¢ +p~* = 1) such that |a(t, x)| < M) V<, %) & R"*", Finally, f,
should be uniformly lower semicontinuous in x. Then J5(x) is a weakly lower semicon-
tinuous functional on W, = WHG).

A proof of these lemmas will be given in a later issue. Obviously by using Weier-
strass’ existence theorem we immediately obtain from Lemmas 1 and 2 the validity
of Hypothesis I.

Conclusions from Hypothesis 1

We introduce the set M, x) = {& e B, x)| f1(t, x, &) = fo(t, x, §)} for fixed
arbitrary <t, x).

The following conclusions are evident.

(1) If the Joffe-Tichomirov condition (4) and Hypothesis | are satisfied, then
glfJ(x, u) = igrle.fl(x) = IvQI(ing(x).

(2) Under Hypothesis 1 each solution xo(t) of (3) with the special property Xo.(t)
e M (1, x0()) almost everywhere on G is also a solution of problem (2), i.e.,

Ngn‘]z(x) = Ja(x) = J1(%o) = MmJl ().

For the proof of the second conclusion we observe that by definition f5 (¢, x, £)
< fi(t, x, &) on B(t, x) and f,(¢, x, &) = fi(t, x, &) on WU(#, x). Therefore, for every
x(t) e A, we have J,(x) = J,(x) > Msz(x) Jo(x0) = Jy(x0).

Now the idea of the proof of ophmal solutions to problem (2) resp. (1) is based
on'the following method. We demonstrate under some restrictions that either x,,(¢)
e M (7, xo(t)) almost everywhere and thus Conclusion 2 holds or that in other cases
there exists another minimal solution X, of (3) fulfilling the assumption of Conclusion
2. Then %, is also -a solution of problem (2) and thus also an optimal state function
of (1).

Here we sketch this method only for the case n = 1. (*)

HyroTHESIS IL. For every n e A(t, x)NIN(2, x) there exists a supporting plane

Df Cpl (fz) with tangenz points <’7,fz(t, X, "7)) and <}71<t, X, "7)’ f2 (t: X, pl(ty X, 77))>
eepi(fi) (=1, ..,m+1) having the properties: pit, x,n) € C* with respect to
<t, x), dimco {p;, ..., Pms1} = m, 0 is an interior point of o {py, ..., Pms1} = R™.

(%) An accordingly larger description will be given in a later paper.
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This supporting plane will be representable by the equation z = ay(t, x, )&+
+b(t, x, n) witha;, b € C* for fixed n. Besides, the integrability conditions p;, 8 Die Dip
= PipatPig Piw for all o, p=1,...,m, i =1,...,m+1 (here not summing resp. 7)
are fulfilled. Finally for every fixed n we have either

Azpa— =0 (case I),
or
Aya—by # 0 everywhere (case II).

THEOREM, Under the Hypothesis 1 and 11 problem (2) has a solution and thus
there exists also an optimal process of problem (1).

The main aspects of its proof are the following. In consequence of Hypothesis I
there is a solution x,(¢) of problem (3). We may assume that x,,(t) € M (2, Xo(2))
not almost everywhere on G, because in the contrary case x, itself is a solution of
problem (2) by Conclusion 2. We introduce the set % = {r & G| x0:(2) ¢ M (2, Xo())}.
Our assumption implies mes N # 0. Since x, € WHG) and v > m, Sobolev’s em-
bedding theorems permit us the conclusion x, € C(G). From this and the property
Xo(t) € A (2, %o()) we infer that x,, is bounded on G. Therefore, by using the “Di-
richlet growth” theorem of C.B. Morrey [10] (theorem 3.5.2, which is valid also
for p > v and p = 1), it is easy to see that x,(r) is even a local Lipschitz continuous
function on G. This implies again, after H. Rademacher (see [10], theorem 3.1.6),
the existence of all directional derivatives of x,(¢) for almost all points ¢ € G. We
denote by M, the subset of all points of N in which all directional derivatives of x,(z)
exist. With the above result the property mes R, = mes N 5 0 is obvious.

We first take a point #, € R, with the corresponding derivative n = x,(%) such
that the case II holds in Hypothesis II. Then we solve for every i = 1, ..., m+1 and
sufficiently small |h| with 7 € R the following m+1 initial value problems:

X = pi(rs X, 17): x(tO) = xO(t0)+h (i = 19 (] m+1)‘

In consequence of the integrability conditions of hypothesis II these initial value
problems are solvable (see e.g. [4]§ 27); we denote their unique solutions by o(t, A, 7).
With them we construct the two integralconoid functions

wit by ) = Minay(t, b, 1), (6 h 1) = Me}x ot h, m)
i

in a neighbourhood of #,. Analogously to [9] we can prove that for sufficiently small
|h| and i > O (resp. k < 0) there exists a special neighbourhood U(¥o, #) of £, with
the following properties.

1. 9y (t, by m)—x,(t) > O for k> 0 in U(ty, h) resp.
ot b, M) —xo(t) < 0 for B < 0 in Ulty, h),
2. py, 2t b, ) —xo(t) = 0 Vte dU(t, h) as the boundary of U(zo, /).

9 Banach Center
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Furthermore, we can prove (see [9], p. 16) that for a,.(?, x, ) — bx(t, x, 7) (Z) 0

and A (Z y the function

. [ENQ] in G\U(ty, 1),

o = pyen(ts b ) in Ulto, )
is an element of U, satisfying the relation J,(¥,) < J,(x,). But this is a contradiction
of the minimal property of x, with respect to problem (3). This means that for x,(z)
there are no points #, € Ny at which % = xo,(,) realizes case IT of Hypothesis IT.

With the result obtained before we know under Hypothesis II that case T is

valid for every #, with the corresponding derivative # = xo,(,). Then the constructed
neighbourhoods Ult,, /), here considered for all 4, € Mo, define a covering of N,.
By using Vitali’s covering theorem we can choose a countable set of disjunct neigh-
bouthoods U; = U, &y) in the sense above, such that mes [Ro—\J Uj] = 0. If
we replace xo(2) in U; by v, (%, ky, 1)) with 7y = xo,(#)), then we obtain, analogously
to [9], a new solution %, of problem (3) with Xo,(z) € M (2, %,(¢)) almost everywhere

icm®

on G. From conclusion 2 it follows that the function %, is a solution of problem (2) .

as well, and thus the proof of our theorem is finished.

Remark. It is possible to give examples in which Hypothesis I is fulfilled but
no solutions of (2) exist because Hypothesis II is not valid (see [9], p. 8).
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APPROXIMATION METHODS FOR NONLINEAR
PROBLEMS WITH CONSTRAINTS IN FORM
OF VARIATIONAL INEQUALITIES
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We consider here a number of nonlinear problems, which can all be written in the
form of mixed variational inequalities. We assume also the constraints on these
problems to be expressed in the form of mixed variational inequalities.

In other words, we consider mixed variational inequalities on sets of solutions
of other variational inequalities. )

In this paper we confine ourselves to the case where the operators and functionals
figuring in the variational inequalities are monotone and convex, respectively.
Generalizations into various directions are possible.

Part 1 contains an existence theorem for solutions of variational inequalities;
we shall show that many problems can be considered as such inequalities. In Part 2
we give some qualitative statements concerning variational inequalities on solution
sets of other variational inequalities. As an example an optimal control problem
for a linear operator equation is mentioned. Part 3 concerns certain projection
methods for the approximate solution of the general problem stated in Part 2. In
Part 4 iterative projection methods for the same problem are considered. Finally,
Part 5 contains some remarks on generalizations of the theory.

1. Variational inequalities

Let B be a real reflexive Banach space with dual space B*. By (w, v) we denote the
value of the functional w € B* at the element v € B. Let C < B be a non-empty set,
S € (B - B*) an operator, z an element of B* and k(x) a proper functional, i.e.,
he(B— Ry), h(x) > —c0, h(x) # +co.
We consider the following problem. Find u e C satisfying

® (z—Su, u—v) > h(u)—h(v)
Relation (1) is called a (mixed) variational inequality. Such an inequality was intro-
duced first by Lescarret in 1965 for the case of a Hilbert space without constraints
(C =B =H).

forall veC.

g+ [1313
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