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Furthermore, we can prove (see [9], p. 16) that for a,.(?, x, ) — bx(t, x, 7) (Z) 0

and A (Z y the function

. [ENQ] in G\U(ty, 1),

o = pyen(ts b ) in Ulto, )
is an element of U, satisfying the relation J,(¥,) < J,(x,). But this is a contradiction
of the minimal property of x, with respect to problem (3). This means that for x,(z)
there are no points #, € Ny at which % = xo,(,) realizes case IT of Hypothesis IT.

With the result obtained before we know under Hypothesis II that case T is

valid for every #, with the corresponding derivative # = xo,(,). Then the constructed
neighbourhoods Ult,, /), here considered for all 4, € Mo, define a covering of N,.
By using Vitali’s covering theorem we can choose a countable set of disjunct neigh-
bouthoods U; = U, &y) in the sense above, such that mes [Ro—\J Uj] = 0. If
we replace xo(2) in U; by v, (%, ky, 1)) with 7y = xo,(#)), then we obtain, analogously
to [9], a new solution %, of problem (3) with Xo,(z) € M (2, %,(¢)) almost everywhere

icm®

on G. From conclusion 2 it follows that the function %, is a solution of problem (2) .

as well, and thus the proof of our theorem is finished.

Remark. It is possible to give examples in which Hypothesis I is fulfilled but
no solutions of (2) exist because Hypothesis II is not valid (see [9], p. 8).
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APPROXIMATION METHODS FOR NONLINEAR
PROBLEMS WITH CONSTRAINTS IN FORM
OF VARIATIONAL INEQUALITIES

REINHARD KLUGE
Zentralinstitut fiir Mathematik und Mechanik der AdW der DDR, Berlin, DDR

We consider here a number of nonlinear problems, which can all be written in the
form of mixed variational inequalities. We assume also the constraints on these
problems to be expressed in the form of mixed variational inequalities.

In other words, we consider mixed variational inequalities on sets of solutions
of other variational inequalities. )

In this paper we confine ourselves to the case where the operators and functionals
figuring in the variational inequalities are monotone and convex, respectively.
Generalizations into various directions are possible.

Part 1 contains an existence theorem for solutions of variational inequalities;
we shall show that many problems can be considered as such inequalities. In Part 2
we give some qualitative statements concerning variational inequalities on solution
sets of other variational inequalities. As an example an optimal control problem
for a linear operator equation is mentioned. Part 3 concerns certain projection
methods for the approximate solution of the general problem stated in Part 2. In
Part 4 iterative projection methods for the same problem are considered. Finally,
Part 5 contains some remarks on generalizations of the theory.

1. Variational inequalities

Let B be a real reflexive Banach space with dual space B*. By (w, v) we denote the
value of the functional w € B* at the element v € B. Let C < B be a non-empty set,
S € (B - B*) an operator, z an element of B* and k(x) a proper functional, i.e.,
he(B— Ry), h(x) > —c0, h(x) # +co.
We consider the following problem. Find u e C satisfying

® (z—Su, u—v) > h(u)—h(v)
Relation (1) is called a (mixed) variational inequality. Such an inequality was intro-
duced first by Lescarret in 1965 for the case of a Hilbert space without constraints
(C =B =H).

forall veC.
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TueoreM 1 (Existence). Let S be monotone and hemicontinuous, h convex and
lower semicontinuous, C convex and closed, and let one of the following conditions,
(a) or (b), be fulfilled:

(a) C is bounded;

(b) there exists a v, € C such that h(vg) < +o0 and

(89, v—v) + h(2)

e - =+ 0w a o> +o0,veC.

Then, for every z € B¥, (1) has at least one solution. The set K, of all solutions
of (1) is convex, closed and bounded. If, additionally, S is strictly monotone or b is
strictly convex, then (1) has a unique solution,

Proof. See [4], [5], [3], [20], [18].

, In the case B = H (Hilbert space) the variational inequality (1) with the iden-
tity mapping S (S = I) has a unique solution u = P(C, k)z € C for every z ¢ H.
In H problem (1) and the fixed point problem

(L.1) u = P(C, th) (I-t(S—z))u, >0 fixed,
are equivalent. The operator P(C, k) € (H — C) is Lipschitz-continuous with the
Lipschitz constant L (P(C, k)) = 1. Especially, P(C, 0) is the projection operator
onto the convex set C. If B is a strictly convex space with a strictly convex dual B*,
then also inequality (1) can be transformed into an equivalent fixed point problem,
similar to (1.1). ' .
We now consider various nonlinear problems, which lead to special cases of .
(a) Operator equations
1.2) Su =z,
Examples for (1.2) are:
(al) classical boundary value problems for nonli
equations in divergent form, e.g., the Dirichlet problem

(1.3 () = Z (=108, (r, s()()) = 2(r)

la|&m

r elliptic partial differential

with r € G < Ry, 5 = {5,: lo| < m}, s@)(r) = {D*u(r): |u| < m} and the boundary
conditions

Dlu(rag =0, |fl S m—1

and

(a2) mixed problems for pseudo-parabolic partial differential equations:

d
1.4 Sx(t)*Ft—Sz(t)u(t) = S:)u(®),  S$,(00u(0) = uy & Hy,
u@): [0, T1> Ho, B=L,(e"™; 0, T; Hy) ([19]).

(b) Variational inequalities of the form

(1.5) (z—-Su,u-v)=20, veC.
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Inequalities of this type arise, for instance, from the problems (1.3) and (1.4) with
additional constraints on the boundary dG (nonclassical boundary value problems,
such as the unilateral boundary value problem and the thin obstacle problem),
on the region G (elastic plastic torsion) or on parts of G (obstacle problems). More-
over, (1.5) may be a necessary and in some cases also a sufficient condition for a
minimum problem (cf. (c)).
(c) The minimum problem
(1.6) h(u) = infh(v),
veC

for instance,
(cl) nonclassical variational problems, i.e., (1.6) where

wn h@) = (H(, s@))dr,

G

B = WG,

If 0H/0S, = S, and C = B, then (1.3) represents the Euler—Lagrange equation
for (1.6)-(1.7).
If C # B and the gradient 4’ of A exists, then we have as a necessary condition

Hw,v—u)>0, veC,

" which corresponds to (1.5) and is also sufficient for convex functionals /.

(c2) Problems of optimal control with operator equations (for example (1.3)
or (1.4)), where h(v) is given by
h(v) = J(x[t), v) = Ji(x[2])+J2(2),
x[] being the solution of
S, v) =0
for fixed v.

If x[7] is a single-valued mapping, S(-,-) is a linear mapping and J;, J, are
convex functionals, then # is convex. If x[ -1, J, and J, are continuous, the functional
A is also continuous. If, on the contrary, S(-, ‘) is nonlinear, then, in general, 4 is
not convex. In this case let us suppose that

J, is lower semicontinuous, J, is weakly lower semicontinuous, and x[v] transforms
every weakly convergent sequence {v,} into a strongly convergent sequence X[v,]
(sufficient conditions for these suppositions to be fulfilled are known). Then h(v)
is weakly lower semicontinuous, and we can apply the Weierstrass theorem.

Remark. Approximation methods for the solution of (1.5) and (1.6) are given,
for instance in [7}-[9], [121, [17], [18], [22], [23]. They are applicable to (c2) (see [11],
[15]). If the gradient

K (v) = Jy(x[2), ©) = Si(x[2], 0)* [Su(x[e], )~ T*Jx(x[e], ©)

is used in an iteration method, then at every step of the method we have to solve
problems in infinite-dimensional spaces. This can be done by approximation methods,
solving operator equations which are special cases of (1.2) [9].
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‘We mention here another possibility: the combination of approximation methods
for minimum problems (1.6) with approximation methods for the process relations
(i.e., for the corresponding operator equations). This combination is an application
to problems of optimal control of the methods proposed below (Parts 2-3).

2. Variational inequalities on solution sets of variational inequalities

We consider
@ (g—Tx, x—y) = f(x)~f0),
where T € (B — B*) is monotone and hemicontinuous, g € B*, fe (B — R,) convex,
lower semicontinuous and proper, and K, = {w € C: w is a solution of (1)}.
Inequality (2) characterizes certain solutions of (1). On the other hand, (1)-(2)
is a mixed variational inequality (2) with general constraints (1) containing the
problems cited above and further special cases. As an example, we mention the
problem of optimal control (OS): ’

vek,

(0S) Let M < HyxB,, Fe(HyxBy, = Ry) and Se (HyxBy— H,). Find
(x, u) € M such that
F(x,u) = inf F(y,v),
hoeM
Sy, v) =0.

(OS) is equivalent to the following minimum problem on the solution set of
another minimym problem (MP):

F(x, u) = iI;f KF(y, ),
v)e
MP) K= {(y,0)eM: HQy,v) = inf HGE, W) where HE, %) = }||SE, W)k, }-

(z, w)eM

For a linear and continuous operator S the functional H is convex and lower
semicontinuous and therefore weakly lower semicontinuous. H has the latter property
also in the case of a nonlinear operator S, when, additionally, S is weakly con-

. tinuous. In this case we are dealing with minimum problems on the solution sets of
minimum problems for weakly lower semicontinuous functionals. We do not con-
sider here approximation methods for such problems. They can be] formulated in
the same form as the methods given in Part 3, and they converge under similar
assumptions ‘[14].

3. Projection approximation methods

For every natural number # let the mappings S, T, € (B — B*) be monotone and
bemicontinuous, the functionals 4, f, € (B — R,) convex and lower semicontinuous,
& > 0 (&g — 0 for n - 0). We introduce the notations 4, = Sy+&, Th, /s = Hu-+eufs
and a, = z,+ &,g, where z,, g, € B*. .

Let (B,) be a monotone sequence of subspaces B, < B, C,, = Cn B, and C, # &.
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We consider
(1n) (an— Ayt u—2) = ju() —ju(2),
(1n) is, in general, a projection regularization method for (1) and at the same time
a projection penalty method for (2) with constraints (1). In particular, for B, = B,
(In) contains methods of penalty operators and penalty functionals and methods
of elliptic and Tychonoff regularization. On the other hand, (1n) represents combi-
nations of these methods with projection methods and, in the case of C = Kz,
projection methods for (2), such as the Ritz- and Galerkin-methods (see, e.g., [9],
[22]). By using abstract difference schemes ([1], [2], [23], [24]), it is possible to extend
(In) to more general projection methods, but we shall not consider this subject
here (see [16]).

‘We now introduce some concepts needed to prove the convergence of the solu-
tions of (1n) to the solutions of (1)-(2).

DEFINITION 1. The sequence {4,} is said to converge to S a-continuously (ap-
proximation-continuously) with respect to {B,} if we have w, — w, Wy € B, = A, w, —
~» Sw, The sequence {j,} is said to converge weakly lower semi-a-continuously to
h (with respect to {B,}) if, for w, — w weakly, w, € By,

3{77% Jn(wn) 2 h(W)

is satisfied (cf. [12], [14]) for sufficient conditions for these properties to hold).
DERINITION 2. C is said to be (C,)-approximable if for every w e C there exists
a sequence {w,} such that w, € C, and [|w,—w|| — 0 (for sufficient conditions see
[9D.
DEFINITION 3. u e C is said to be (Un, &y Cuy Zn— Sn, hn)-approximable with
respect to {u,} (u, € C,) if there exists a sequence {v,} satisfying
(a‘) 'U" € CII!
(b) v, —u and

veC,.

(¢) Tm {—:— [(z— Sns, u,.—vn)+hn(vn)~hn(un)]} < 0.

H=»00 n
(Sufficient conditions are contained, for instance, in [12], [14]).
We remark that another sufficient condition for (c) to hold is the following:
v, is a solution of
(Zp—Sn?, v—0) Z hy(0)—hu(D), T ECy.
This remark applies to (OS) and (MP) if one takes
hy(Z, W) = H, G W) = 5|1P.SE, W), -

(in this case (In) combines a projection method for the minimum problem with
a projection method for the process equation) and if we have

S(z, W) = S1(2)+S:(W)
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where S; and S, are linear and continuous operators, S, is positive definite,
P, denotes the orthogonal projection operator onto Hy, = Hy, M = Hyx M?,
M? < By, M? = M*nBy, and M} # @ hold, if there exists a sequence {i,} satisfy-
ing W, & M}, w; — ue By (where u is the second component of a solution (x, u)
of (08)) and, finally, if v, = (%, w;) where Z; denotes the unique solution of the
operator equation in H;

PS(z,w) = 0.
In the case described here (1n) has the form
G.1D Hy (o, )+ 6o, e} = inf  [H,(5, D)+, F ), 0)].
. (Fi)e Ho x M

For weakly continuous nonlinear operators S one can proceed in an anal-
ogous way.

THEOREM 2, Let the following conditions be satisfied:

1. {4,} converges to S a-continuously with respect to {B,}; {ja} converges to
h weakly lower semi-a-continuously and upper semi-a-continuously with respect to
{B:}, lizg—zll - 0 and |Ig,~gll - 0.

2. (1n) has at least one solution u, for all n, (1)~(2) has a solution u which is
(Vns &, Cny Zy— S, hy)-approximable with respect to {u,}.

3. C is (Cy)-approximable if (for all n) z, # S,.

4, f, = ffor all n, and f is uniformly convex or

4. T, = T for all n, and T is uniformly monotone.

Then the sequence {u,} converges strongly (in B) to u.

Proof. See [14]. Special cases of Theorem 2 are contained in [7], [9], [(2]. In
[14] Theorem 2 is formulated in a more general way.

For strongly convex functionals H Theorem 2 implies results on the convergence
of the solution of (3.1) to the unique solution of (OS).

As the example of the optimal control problem (OS) shows, Theorem 2 can be
applied directly (cf. [9], [11], [19]). If this is not possible, then one may take B, = B
and apply the usual projection method to (Ln).

4. Tterated approximation methods

We shall now combine method (in) with an iteration process. This leads to several
types of iterated projection approximation methods.
Let M be a metric space, {4;} a sequence of mappings, '4; ¢ (M — M), {x;}
a sequence defined by
“.1) . ) X =AdyXi—y, XoEM,
where T; = 4;... 4, is lipschitzian with Lipschitz constant L(T}) — 0 as i ~ co.
Let uy € M be an element satisfying (in the sense of the metrics of M) Tjuo — 1o
for i - oo. Then {x;} converges to uo in M (cf. [10], [12]). In [9], [12], [14], and
[17], [18], several special variants of (4.1) are considered, statements concerning
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the speed of convergence are derived and generalizations to locally lipschitzian
mappings 4, are given. For applications see [9], [10], [12].

If one takes B = H in the conditions of Part 3, then the sequence of fixed point
problems

U, = P(Cn: tnjn)-Pn (I'“tn(An“an))un

is equivalent to the method (1n).
For instance, let 4, be strongly monotone and lipschitzian. Then, under the
assumptions of Theorem 2, the iterated projection method

4.2) xp= [P(Cy, 4j) Pi(T-ti(ds—a)]™, x4y, %o € M,

converges in H to the same solution u of (1)-(2) as the method (In). Here n, is the
smallest integer not less than ey/ (I—L(W,)), where e, is a fixed positive number
and L(W)) is the Lipschitz constant of W; = I'-#(4,—a;), and #, is the iteration
parameter satisfying

ZC(Ag)
L(4:)?

The convergence result cited here is proved in [14]. For special cases see [7], [91, [12].

Method (4.2) contains such procedures as the well-known projected-gradient
method, methods of iterated penalisation” and iterated regularization and their
combinations with projection methods, for example projection-iteration methods.

(4.2) can also be applied to (OS) if one proceeds from (3.1) to equivalent varia~
tional inequalities (using here the differentiability of the functionals occurring in
(3.1)). In this way a projected penalty method for (OS) is obtained which has to
be iterated.

Similarly to (4.2), the above-mentioned generahzatlons of (In) by abstract
difference schemes can be iterated.

In Hilbert spaces, the iteration of methods includes an effect of linearization,
very useful for numerical realization. Such an iteration can also be carried out for
mappings which are not locally lipschitzian [8], for pseudomonotone mappings,
and in some cases (projection-iteration methods) even in Banach spaces [12], [14].

0<y < (¢(4;) is the monotonicity constant of 4;).

5. Concluding remarks

In formulating the optimal control problem (OS) we used mappings from the whole
space Hy x B, into H,. This makes it possible to cover such problems as, for instance,
optimal control of classical boundary value problems for elliptic partial differential
equations and for pseudo-parabolic partial differential equations.

However, the scheme given in Parts 2 and 3 may be extended to problems where
the mappings are defined only on a dense set. Then it can also be applied to control
problems for parabolic partial differential equations ([13]). In [15] some optimal
control problems for variational inequalities representing nonclassical (for instance,
unilateral) boundary value problems for partial differential equations are considered.

10 Banach Center
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DEUX REMARQUES SUR LA COMMANDE BANG BANG
DES SYSTEMES SEMI LINEAIRES

C. LOBRY
U.E.R. de Mathématiques, Université de Bordeaux, Talence, France

Le but de cette note est de faire quelques remarques sur la contrdlabilité Bang
Bang des systémes semi linéaires de la forme:

i=p

dx

® = =0+ Z uf'(), xeR.

t =1
Nous appellerons commande admissible une application constante par morceaux
d’un intervalle de R dans le cube unité de RZ:

U= {ul’ Uzy ooy Up, lull < 1},
et une commande Bang Bang sera une fonction constante par morceaux prenant
ses valeurs dans les sommets du cube unité, soit:
Ups. = {(uy, 43, ..,tp) e U; oy = +1ou —1};

le fait de choisir pour commandes admissibles des commandes constantes par mor-
ceaux au lieu de commandes différentiables par morceaux comme il est plus fréquent
de le faire, apporte une petite simplification & ce qui va suivre mais n’est pas une

-restriction essentielle. Si # — % (¢) est une commande admissible, on note sa réponse:

t = x(t, xo, %), c’est, par définition, la solution du probléme de Cauchy:

i=p

G =S > wOr),

x(O) = Xos
avec:
1= U) = (), ua (), ..., u5(1)).
L’ensemble des états accessibles & Iinstant T noté A(T, x,, U) est défini par:
A(T, xo, U) = {x(T, x,, %) ; % € {commandes admissibles}}.

L’ensemble des états accessibles 4(x,, U) est la réunion pour T' > 0 des A(T, x,, U).
On définit de la méme maniére les états accessibles par des commandes Bang Bang,

10% [139)
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