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It is known that one can formulate a control system in orientor form [3]. The optimal
time solutions are trajectories of an orientor field, contained in the boundary of
the emission zone [1]. In this note we consider only the emission zone of a single
point and we give sufficient conditions for any two trajectories tangent at this point
to be identical. For uniqueness at regular points see [2]. The problem was suggested
by Professor A. Pli§. I am grateful for his valuable advice.

LemMmA 1. Let y be an absolutely continuous function on a closed interval [0,]]
with values in R" tangent to zero-function at the point zero. We assume that there
exists a non-negative integrable function M on interval [0, 1] such that the inequality

1y’ (O < [L+ M)y (o)
holds for almost every t € [0, I].
Then we have y = 0.

t
Proof. Let ¢ be a function defined by the formula ¢(t) = 'j |y (s)|ds. We are
)

going to prove that ¢(¢) = 0 for ¢ € [0, /], which implies our thesis. Suppose that
@ # 0. Then there exists an a & [0, /] such that ¢(a) = 0 and p(t) > 0 for te (a1}
We get the inequalities:

19'(t) < [L+tM@)]e(2) : for ae. tel0,7),

8
M‘L’.Egﬁ),. < ..ﬂiﬁlexp[s M(:)dz] for a<a<p<l,
1

ﬁ%ﬁl)«s [1+ ‘S’ M(t)dt] sup]l@'—exp[(s M(t)df] for a<a<p<l

tefa,o

The right side of the last inequality tends to zero if o tends to a, and so @(8) = 0.
Thus we must have ¢ = 0.
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Notation and definitions. Let X be a Euclidean space. By an orientor we mean
a nonempty, compact, and convex subset of X, by a strictly convex orientor —
an orientor such that its boundary does not contain a non-empty open interval.

Let A = X, x € X; we are going to define two subsets of X: S, and S_:

zeS.(x, 4) < 3&> 0: intconv|{{x} U{y e X: |y—x—s(z—x)| =¢?} = 4,
zeS-(x,4) < &> 0: intconv{{x} U{yeX: |y—x—s(z—x)| = &2} = X\ 4.

We say that 4 is regular if S, (x, A) is convex and an equality cI[S, (x, 4)] U
U S.(x, A) = X holds for every x € X.
Let A < X be a regular set. For a € 84 (boundary of 4) we put:

Via, d) = {veX: |v| =1, v-S.(a, 4) < 0}.
Let B and C Dbe strictly convex orientors in X, We write

(B, C) = max {supinfix—y|, supinf|x—y|}.
xeB yeC xeC yeB

Function r is a Hausdorff metric.
s(B, C) = sup{[y~x|: xe dB, y e dC: V(x, BynV(y, C) # O}.

Function s is a metric introduced by A. Pl§.

25,0 = supl B o3 cadan, x v,

(X,9)€0Bx 8B: V(x, A)nV(x, B) # @, and V(y, A)nV(y, B) # QJ}.

PROPERTY 1. For strictly convex B and C and for a regular A the following impli-
cation holds:

[Vib, BYnV(a, A) # B, Ve, C)nV(d', A) # B, a # a'] = B
= |b—c| < p(B, Ala—a'|+s(B, C).

Proof. Let v € V(e, C)n Vta’, A); there exists a b’ such that v € V(b', B).
Then

b—b) < p(B, A)a—a'| and |p'—c| < 5(B, C).

By the orientor field we mean the function F: Rx R" — #(R") such that F(, x) is
an orientor for (f, x) e Rx R".. We say that an absolutely continuous function x
given on a closed interval L is a trajectory of the orientor field Fif x'(r) & F(t, x(1))
forae telL.

Let E be the union of all trajectories of the orientor field F, on the closed intef-
val [0, 7] (with I > 0), such that x(0) = 0. We call it the right-hand emission zone
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of point (0, 0) € R x R", We put
E¢t)={xeR" (t,x)eE} for tel0,]].

In what follows we use the above notations.

LeEMMA 2. We assume that:

(a) F is continuous in the Hausdorff metric and F(t, x) are strictly convex.

(b) E is regular.

Let (t, x(2)) € OE for t € [0,1). Then:

(1) x(t) € B[E(t)] and E(t) is regular for t € (0, J).

(2) x'(t) € OF (1, x(1)) for ae. te(0,D).

(3) V[x (@), E()] nV[x'(2), F(r, x(1))] # @ for ae. £&(0,1).

Proof. (2) follows easily from (a). (1) follows from (b) if we notice that o[E(¢)]
= (QE)(¢) for ¢ € (0, 1). Proof of (3): We fix ¢ € (0, /) such that x'(¢) € 6F(t, x(t)).
We assume that F(f, x(¢)) has interior points. (In the opposite case F(t, x(¢)) is
reduced to a single point and (3) holds.) For o = (v;, v,) € V[ (t, x(1)), E] we denote
by H the subspace of R x R" passing through the point (¢, x(z)) and perpendicular
to v. It follows from (a) that the cone with the top in (z, x(t)) and with the section
at the point +1 equal to x(t)+F(t x(t)) is contained in the closed half-space,
determined by H, which does not contain the point (¢, x(¢))+v. We can choose
o such that (¢, x(1))+ (1, x'(+)) € H; then v, # 0. We put u = 2,/|z,|, and then

ue V(x(t), EQ)nV[x'(@), F(t, x())].

THEOREM. We as&ume (a) and (b) from Lemma 2, and that there exists a non-
negative, integrable function M on the interval [0, I} such that
s(F(t, x), F(t, y)) < M()|x~yl|
and

p(F(r, %), {-E(t)) < 1HM()

for (t,x)e E and (t, ) € E. Then any two trajectories of F on [0,1] contained in

OE tangent at zero are identical.

Proof. Let x and y be such trajectories. We apply Lemma 2to x and y, and accord-
ing to Property 1 we get the inequality

¥ () ~y' ()] < p(Ft, x(2)),

: E(t)

2 -JLEE—)—l-H(F(t, x(1)), F(t, y))

for a.e. #es[0, 1]; it follows that 2]x'(t)—y' ()] < (1+2M()1)|x(t) —y ()] for a.e.
te(0,1).

We apply Lemma 1 to the function x—y.

The proof is thus complete.
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The purpose of the present paper is to define some tangent sets (see Definitions 1,
2, 3, 4) and to discuss the transformation of these tangent sets (see Theorems 1, 2)
by means of differentiable functions (see Definitions 5, 6).

Tangent sets

Let X be a real topological vector space. We shall denote by # the family of all
neighbourhoods of 0 in X,
Let X, = X, and let x, € X.
DEFINITION 1. Ly, (x,) is the set of all x e X satisfying the condition: there
are r > 0, U e % such that if s € (0, r), u € U, then xo+s(x+u) € X,.
DEFINITION 2. Jx/(xo) is the set of all x e X satisfying the condition: there is
a U e such that for every r > 0 there is an s € (0, r) such that if ue U, then
Xo+s(x+u) € X,.
DEFINITION 3. ky[(x,) is the set of all x € X satisfying the condition: for every
U e% there is an r > 0 such that for every s € (0, r) there is a ue U such that
Xo+s(x+u) € X,
DEFINITION 4. Ky, (x,) is the set of all x € X satisfying the condition: for every
r >0, Ue there are s € (0, r), u & U, such that x,+s(x+u) € Xo.
There exist many definitions, and notations for each of the above tangent sets.
Let us recall that Definition 4 is equivalent to the definition in [1]. For other references
see [2].
[131 the sequel we shall denote by compX, the complement of Xo. The subse-
quent three propositions are direct consequences of the above definitions.
ProrosITION 1. The following equalities hold:
comp an(xo) = Koampx.,(xo)i
comp Iy, (¥o) = K qompxo (X0);
compkyx,(¥o) = loompxs(¥0)}
comp Kx,(*0) = Leompx,(¥o)-
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