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1. Introduction

The penalty functional technique is one of the most general tools in the numerical
solution of constrained minimization problems. A. rather full treatment of its theory
and applications is given in [2], for the case of finitely many constraints.

This method has a known numerical disadvantage: computational effort per
iteration usually increases. To avoid this, the shifted penalty functional technique
was introduced in 1969 by Hestenes and Powell, and has been broadly investigated
since then; see, for instance, [4], [6], [7]. In a series of recent papers Rockafellar
presented a theory of augmented Lagrangians, closely related to this topic. All
the preceding considerations were carried out for the case of constraints in R".

The numerical practice in applying the above-mentioned techniques to infinitely-
dimensional problems, and the d.velopment of the discretization theory for extre-
mal problems, make clear the need for a mdre general treatment of penalty functionals
including the case of infinitely many constraints. Although such penalty functionals
have been studied for particular cases [1], [3], "the first general formulation and
results were obtained in [8). The present paper contains some new results in that
direction.

2. Projection on a cone

While the notion of the projection on a convex closed set in a Hilbert space was
known long ago, its properties were not investigated until relatively recently (Mo-
reau, Zarantonello).

The basic facts needed in the sequel were given in [8].

* The work was supported by the National Science Foundation Grant No. GF-37298.
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Assume throughout that H is a Hilbert space, D < H a nonempty closed convex
cone. By D* denote the dual cone of D, i.e.,
D* = {d*e H: {d*,d) > 0 Vd e D}.

The unique element p® € D minimizing ||p—~d||, d € D, is called the projection of p
onto D. Similarly, we have p~2*,
The basic properties of these projections can be summarized as follows:

(2.1) (Moreav) Any element p € H can be represented in the form
p=p+p>
with
&% PP =0
and therefore
ol = 1IpPI12+([p~"|f2.
This decomposition is unique in the sense that, if p = p, +p,, pieD, p,e —D*
p1, 2> =0, then py = p®, p, = p~>,
@2 NPPI<lpll Vo € H; 122 ~PBl < llps—p3ll Vo, ps € H.

(2.3) Functional q: H — R defined by q(p) = $1p=P"? is convex and Fréchet
differentiable. Its gradient is equal to p~P*.

3. General optimization problem

In the sequel E will denote a Banach space, Q: E — R a functional and P: E—~ H
an operator. Consider the following problem:

31) {minimize o),
’ subject to yeY, = {yeE: p—P(y) e D}.
Here, p is fixed in H.
Define the functional X: E - R by K(y) = S 11(p=P»))~2*||% Then, by 1),
problem (3.1) is equivalent to
62) {min'imize o),
subject to y e Ay = {y e E: K(») < 0}.

. Thus, a fairly general operator-constrained problem (3.1) can be converted
into a problem with a single functional constraint. Moreover, K “behaves well”
when the operator P does.

(3.3) ProrosiTioN. (i) If P is D-convex, then K is convex and weakly lower
Semicontinuous.

(i) If P is weakly continvous, then K is weakly lower semicontinuous.
(iii) If P is Fréchet-differentiable, then so is X and

K,0) = Py (0) (P()—p)>".
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Recall that the (normal) Lagrange functional for problem (3.1) is defined by

AQ@, 1) = QO)+<n, PG)~p)
for (y,n) e Ex H.
Assume that  is a local solution of (3.1).
(3.4) DEFINITION. % € D* is called a (normal) Lagrange multiplier for problem
(3.1) at the point  iff

()] {n PG)=p) =0

and, if Q, P are Fréchet-differentiable, then

(i) 4,3, m) = &)+ P*o)n =0

or, if @ is convex and P is D-convex, then

@) AP, )< A(,m) VyekE .
Define the shifted penalty functional ®: Ex Rt x H - R by
(35 O, ¢, ) = Q) +3ell (PG)—2)”"II*. .

(3.6) PROPOSITION. Assume that $ minimizes D(-, o, v) over E. Write
b= (PO)—op"+0, § = o(PO)I~0)"
Then 3 is a global solution of the problem:
{minimize o),
subject to ye Yy = {y e E: p—P(y) e D}
and, if P, Q are Fréchet-differentiable or Q is convex, and P is D-convex, then %) is
a normal Lagrange multiplier for the above problem at $.

4, Convergence of the nonshifted penalty method

Define the (nonshifted) penalty functional F: Ex R* — R

@) F@,0) =20 ep).

(4.2) THEOREM. Suppose that Q, K are weakly lower semicontinuous, Q(y) = B
> —ow VyekE, where E is a reflexive Banach space. Suppose that the sets A,
= {y e E: Q@) < & K(y) < 8} are nonempty and bounded for 0 < 8 < 8, 6o > 0
and some e. Then

(i) there is a g = O such that for any o > © there exists a y, € E minimizing
F(-, @) over E.

Suppose that 9, = ©, 0x = 0 and write yn = Y,,. Then:

@iy Q0w 2, yi:llf, 20, oK) 7 0;
and each of the weak cluster points of {yy} is a solution of (3.1).

(ili) Write py = (P(yw)—p)*"+p. Then }'1_{510 P =p and each y, minimizes Q

over Y, = {yeE: p,—P(y)eD}.

-
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(iv) Write 0, = 0,(P(ya)—p)>* and assume that O, P are differentioble or Q
is convex, P D-convex. Then m, is a normal Lagrange multiplier for the problem of
minimizing Q over Y,,.

(v) Let Q, P be continuously differentiable or let Q, P be continuous, let Q be
convex, and let P be D-convex. If the sequence {y,} converges in norm to a point
(being hence a solution of (3.1)), then each weak cluster point of the sequence {1}
is a (normal) Lagrange multiplier for problem (3.1).

It is known that the assumptions made above are not the weakest possible to
guarantee (ii). This theorem, however, brings to light two interesting features of the
penalty algorithm. First, we see that the penalty algorithm can be treated as a two-
level coordination technique: a sequence {g,} is chosen to coordinate {p,} to p.

Secondly, the theorem generalizes Balakrishnan’s computational approach to
the maximum principle [1]: under appropriate assumptions, {n,} approximate the
Lagrange multipliers of the original problem.

This theorem has also as a corollary an interesting qualitative result concerning
the existence of Lagrange multipliers,

(4.3) COROLLARY. Under the conditions of Theorem (4.2 iv), denote by P the set
P ={peH: 35, > 03 VO <5< 4f* # O and bounded}

where AP = {yeE: Q) < s, [|(PG)—p)™"|l < 8} Denote by P, the set of
all p € P such that normal Lagrange multipliers exist for the problem of minimizing
Q over Y,. Then P, is dense in 2.

5. Shifted penalty method !

The following theorem is the generalization of Rockafellar’s result [6] in finite dimen-
sions. -

(5.1) DerNiTION. Problem (3.1) is called stable of degree 2 iff there is a 0>=0
and a v € H such that

O(p+3p) > Q) +o <o, o> ~Lellbpll*  Vipeo
where @ is some neighbourhood of zero and Q@) = inf Q(»).
yeYy

(5.2) THEOREM. Assume that Q(p+ op) = B > —oo for Op in some neighbourhood
of zero and suppose that $ is a global solution of (3.1). The necessary and sufficient
condition for the existence of a pair (g, v) € R* x H such that ) minimizes (-, 0,v)
over E, is that problem (3.2) be stable of degree 2.

Under somewhat stronger assumptions we can find the above-mentioned pair
(%) in an iterative way. More precisely, the following theorem holds, generalizing
the results of [5] [7] to infinite dimensions.

Assume for simplicity that p = 0.

(5.3) THEOREM. Suppose there is a neighbourhood 0, = H of zero such that
the minimization problems (3.1) have unique solutions Jor each p € 0, and unique
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Lagrange multipliers n(p) such that the mapping p — n(p) is Lipschitz continuous
with constant R,.

Suppose the shifted penalty functional attains global minimum for each o > o'
and v € 0, = H, 0, being a neighbourhood of zero. Then

(i) problem (3.1) with p = 0 is stable of degree 2.

(il) Let a sequence {v,} be defined by:
Untr = (P(y,,)+v,, D*,

where y, minimizes globally D(-, o, v,). Then there is a o' such that for
o = max(o’, "), {vn} < Oy, {pa} =0, where p, = Vyy,—2v,. Moreover, p, — 0
so that the sequence {0v,} is convergent to the unique Lagrange multiplier 1, for
problem (3.1) with p = 0.

Uy :O:

1+
"y 0 = P

(iii) Given any a > 0, there exists a 0, = ¢ “ R, such that ¢ > 0«
implies
(12ns 1]l < allpall,

1 1
'Un+1—E710 <a 7)»—’9‘7]0

Combining this result with (3.6) one can obtain a strong convergence theorem
for the shifted penalty technique.

6. Conclusions

The penalty functional for a general infinite-dimensional operator constrained
extremal problem has been defined and its properties have been investigated. Two
penalty techniques: increased nonshifted and nonincreased shifted, have been con-
sidered. A theorem has been stated generalizing Balakrishnan’s e-technique approach
to the necessary optimality conditions. Further two theorems generalize known
results (obtained formerly for the case of a finite number of constraints) concerning
the shifted penalty technique. Thus, the projection on a cone is a useful tool for
a general theory of penalty methods in a Hilbert space.
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1

Let X be a real Banach space with norm || - ||, X, an open subset of X, and W a certain
set. Let T Xox W — X be a transformation and f: X, x W — R a real-valued
functional. We consider the following optimal control problem:

(1) Minf(x, w), (x,w)eXox W
subject to the process equation
2 x = T(x, w).

For this problem L. Bittner [1] has developed a simple exact method of deriving
maximum principles. He has applied his method especially to optimal control pro-
cesses governed by Urysohn integral equations with variable integration domains
and continuous kernels. T want to give here at first a modification of Bittner’s basic
theorem for this model of an optimal control process. Then I will apply this modifi-
cation to a derivation of a maximum principle in the case where the process equa-
tion is a Hammerstein integral equation with a completely continuous kernel in
a space of continuous functions. ’

2
Let Y be another real Banach space with norm || -||,, which has the following prop-
erties:
(a) X is a dense subset of Y,

(b) the embedding operator X — Y is continuous, i.e., there exists a constant
C > 0 such that

lixll, < Clixll  VxeX.

THEOREM. Let the following assumptions hold:
(i) T(x, w) has a partial Fréchet derivative T.(x ,w) at every point (x,w) of
the set B(xq, o) x Wy, ro > 0, where B(x,, ro) denotes the ball with centre x, and
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