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In this note we présent a short summary of recent and continuing investigations
involving projection methods for retarded functional differential equations. A more
detailed account, along with proofs, may be found in [1].
We consider the n-vector nonhomogeneous retarded equation

W %) = Lx)+f(t), tel0, ],

‘ Xg = E: N
where x, €% = C([—r, 0], R") denotes the n-dimensional column vector valued
function 6 — x(¢t+6), 6 € [—r,0] and L is a continuous linear functional on ¥
given by o

L(®) = § dn©®)9().
S )
The 1 x n matrix function # is, by the familiar Riesz theorem, of bounded variation
on [—r, 0]. We denote the solution of (1) corresponding to initial data § € ¢ and
nonhomogeneous term f & L([0, #,], R") by x,(, /). Considering the homogeneous
form. of (1), one can define a family of operators T(t): € — &, t > 0,
T)¢ = x(6,0)
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and casily verify that {T(t)};», is a strongly continuous semigroup with infinitesimal
generator &/ 9 () — € given by

@(0), -r< 0 <0,

_Jo
RO =N e, 0=0,

where
[}
@(at) = [p ¥l pis Cland $(0) = | dn(())(p(o)},

The spectrum a(.ln() of & consists of only point spectrum and one can argue that
A e a(of) = n(s#) if and only if det A(2) = 0 where

[i]
9 A(Y) = AI— S dn(0)e®.

One can further argue that given any real ¥, there are at most a finite number of
A e (/) having Re (1) > y and, if one specializes equation (1) to a differential-
difference equation, the eigenvalues are asymptotically distributed in certain curvi-
linear strips (see [2]).

For A € m(sf), the operator o — Z,I has finite ascent and thus the generalized
eigenspace () is given by My () = w—z nk for some finite k, where as
usual Ay denotes the null space of the operator B, The subspace ./{;,J(M) is finite
dimensional, say of dimension 4, and is invariant under o and 7'(f). We denote
by @, the n x d) matrix function
®) Py, =Ioh, ¢4, oo o,
where {¢}}iLy is a basis of generahzed eigenfunctions (having form g;(0)e*?, g
a polynomlal) for A, (sf). A bilinear form on C([0, r], R™)x ¥ defined by

00

@ o> = 09O~ § §w(S-0)dn(0)¢(S)d~v

-
allows one to define an “adjoint” &/* to & via the “usual” definition ¢af*p, ¢

=<y, S¢) and argue that m(sf) = m(s/*), Furthermore, .lt, (") also has di~
mension d; and a “basis” d) x n matrix function

"/)AJ
W,
can be chosen so that P, Py > = I, the djx d) identity matrix,

The developments above give rise to (continuous) projection operators Py
% - .Ilﬂ (o) and Qa defined by

PAJ(P = ¢1J<!p}ur W)
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and
0, =1-P,
These projections decompose the space  so that one may write
C =%p D %y,
where

%p = {pebl o = d&lb, be R,
¢ = {pe¥ Py, ¢ =0}
On the subspace ./1{41(.91) =P =% it can be shown that (1) reduces to an or-

dinary differential equation (actually a linear d -vector system of equations).
Carrying out the above procedure for the first N eigenvalues (ordered by de-
creasing real parts), one obtains a projection PN onto the sum of the first N generalized
N

eigenspaces. Defining the 7 x Z d; matrix function
1

(DN = [dsl“ ‘-'ndj).]

N’

N
and the corresponding 2 d; x n matrix function ¥¥, one obtains the projection

® Pg = OV(PY, )
and again € is decomposed
b =%s @ %,
when €5 = /2 ./(; (). On €, the equation (1) can be reduced to
) = BN+ PO O,
W) = PV, xo),
where y¥(t) = (PV, x> and BY is an appropriately chosen matrix.

If #is a real number such that {ieo(«)| ReA> 8} = {As, 4, .o, M},
then there are positive constants K, u such that
() [PYT(t) | < Ke®~#*|PVg| . for <0,
® 0¥ T(t)pl < Ke®-#*|QVg| for 130,
where Q¥ = I~ P¥. We remark that the left side of (7) has meaning for # < 0 since
on % = PN@ the equation (1) reduces to an ordinary differential equation with
solutions existing on (— o0, o).

All of the above results were established some time ago by Hale 4] and Shi-
manov [11]. These ideas were subsequently employed to study a number of topics
in the qualitative theory of functional differential equations including, among others,
bifurcation, asymptotic behavior, existence of periodic solutions, and preservation
of saddle point properties under nonlinear perturbations. For an up-to-date account
of the above ideas along with some of the applications, one should see the monograph
by Hale [5].
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A question of great interest from several points of view involves the behavior
of the projections PY on solutions of (1) as we allow N — o (i.e., as we include
more and more of the spectrum of & in the above construction). In particular,
for what classes & and & can one establish PYx(&,f) = x(£,/), L€ &, feF, as
N — 07 An appealing approach to this question might involve use of the estimates
(7), (8) in conjunction with certain representation formulae (for solutions of non-
homogeneous equations) which may be found in [S]. However, the constants X, u
in (7), (8) depend very much on N and in fact it can be shown that K = K(N) in-
creases as N — co. Examples to show that this approach is fraught with difficulties
can be found in [1] and [7].

Results such as P¥x, — x, are in reality expansion theorems (in the #-norm)
for solutions of (1) in terms of eigenfunctions et (actually in terms of generalized
eigenfunctions). Expansion theorems of this type were considered by Pitt [9] and
Bellman and Cooke [2], among others. We sketch briefly the Bellman~Cooke tech-
niques.

Assuming that f(#) = 0 for ¢ > ¢, and taking the Laplace transform in (1),
one obtains

® . LA (s) = 47(s)4(s)
where the analytic function ¢ is defined by

ty

]
g(s) = é0)- | {2 dn(O) §(x)dv+ | ef ()dr.
0 [}

-r

(10

Using the inversion formula one finds

Pl

{ s @awas

y=too

where  is such that all roots of det A(s) = O lie in the left half plane Re(s) < .
The expression (11) leads in turn to expansion results

an x(t) =

i

12) x(®) = lim > piiyer

I 550
where pj(f)el! = Res {4~ 1(s)q(s)},_,4, and C; are the contours described in [2],
p. 100.

If the Beltman~Cooke expansion terms were the same as those found via use
of the Hale-Shimanov. projections described above, one might hope to use results
found in [2] to guarantee PYx, — x, as N — o, That these terms are indeed the
same is shown in [1]; that is, it is demonstrated under very reagonable assumptions
(Eeb,fe L0, t,], R"), f(t) =0 for t>t,) that, for t >, and §e&[~r0]
Pyx(&,0)6) = Dpi(t+0)eM+0 where p; is the polynomial in (12). We are thus
in a position to use the ideas and methods in [2] to establish, if possible, convergence
of the sequences P"x,,
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Turning to the convergence results, we restrict our considerations here to the
special case of (1) given by

x(') = iAlx(t"hl)+f(t)7 te [03 tl]’

i=0
13)
X =&,
where 0 = By < Ay < ... < h, < r, so that A(s) = s[— Z Aje~*, By making use

of fairly intricate arguments similar to those found in [2] (some of the estimates
given in [2] are not sufficiently sharp and must be improved) one can prove

THEOREM. Assume that F < Ly([0, t,), R") is bounded and det A, # 0. If ¢
— x(1, £,f) denotes the solution of (13) corresponding to £ € €, f€ &, then

x(t, £.5) = lim )" p()e
[0 AECL
obtains for t > t; —h,. In addition, the convergence is uniform in f'& & and uniform
in t on any finite interval [a, b] such that t,—h, < a.
An almost immediate corollary of the above is

. COROLLARY. Suppose that &, is a.bounded subset of Ly([0, t,], R") which has
the property: f € &, = f(t) = 0 on (t,—e¢, t,), where ¢ > 0 and f1-h,,—s > 0. Then
if det A, # 0,

P¥x,(&,f) = %, f )
for each t > t,—¢, the convergence being uniform in f e &F,.

The condition f(¢) = 0 on (t; —¢, t,), & > 0 arbitrary, in order that P¥x, (&, f)
— x,,(£, t)is related to the boundary condition @(0) = L(p), which each ¢ in My, ()
< 9(of) must satisfy. Since each P¥x, is in 2(sf), we observe that it is not surpris-
ing that one needs x(¢;) = L(x,,) in order to establish the convergence results.

Using simple backward continuation arguments, it is not difficult to obtain
expansion results for “initial functions” (i.e., P¥& - £). (The question of expansion
of “initial functions” in uniformly convergent series of exponentials was considered
for very special cases of (13) by Markushin in [8], but the conclusions there are
based on faulty arguments—see [1].)

If one drops the assumption “det 4, % 07, one can establish only much weaker
results, Roughly speaking, PVx, (£ f) - %, (6,/) as N - o0 if f(v) =0 for =
> t,—nh,—s. For the nth order scalar equation (for which, of course, we have
det A, = 0) somewhat better results can be given which require f(7) = 0 for v
> t,—h,—s&. That these are essentially the “best” (in some sense) results possible
can be demonstrated by considering (13) with / = 0. Using results due to Henry [6}
on the “ascent” and “descent” of solution operators and their functional analytic
adjoints, it is possible to construct homogeneous systems satisfying (here Z(T(t))
denotes the range of T(¢) on %) ‘

A(T(0)) & 55an {My(al)| &€ a(a)}
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for t < nh,, while for ¢ > nh, one has
%(T(t)) < span {M ()| Aeo(H)}.

We indicate briefly one possible application of the above-outlined projection
ideas and results to the theory of optimal control of systems (1), where we take
f(t) = Du(t), D being a given n x p matrix. The problem we consider is that of mini-
mizing J: L, - R over the set V = {ue ¥ < Ly| x,(§,u) = {}. Here the func-
tions & (initial) and { (terminal) are given (from some specified subset of €) and % is
a specified closed linear subspace (or convex subset, in the case constraints on the
controls are desirable) of L, ([0, #,], RY).

N
For a fixed positive integer N, we project the problem onto %y mj}l ot ()

(see (5), (6) above) where the differential equation becomes (6) with f = Du. The
minimization problem thus obtained is one of minimizing J over

V= {ued ysu) = PV, DY,
where, of course, y"(¢; «) denotes the solution at time ¢ of (6) corresponding to u.
Let #" denote the solution of this minimization problem (under reasonable assump-
tions on J this solution exists uniquely). The question of interest is whether the

solutions of these sub-problems tend to the solution of the original problem as one
lets N — oo.

By some manipulations which we shall omit here, the sub-problem can be put
in the form of the classical problem of minimizing a functional on a Hilbert space
subject to a finite number of equality constraints. That is, one seeks to minimize J
over

N
VY = {ME%l <gh u>2 =¢, I = 1:2: ) Z dj})
J=1

where ¢;, g; are properly chosen and {, >, is the inner product in L,.
We list some hypotheses of use here:
HL. Jis strictly quasiconvex ([10], [3]) and lower semicontinyous on L.
H2. For any K = L,, J bounded on K implies that K is bounded,

H3. The system (1) and admissible controls % are chosen such that P¥x, (€, u)
= X, (&, u) for & fixed in € and we U,

H4. J is strongly convex [10] on L,.

The following theorem is proved in [1].

THEOREM. Suppose H1, H2, H3. Then J@) 7 Ju*) and @& — u* in L,
where u* is the unique solution to the original problem. Under the added hypotheses
(a strengthened form of that in 1) H4 one actually has &% — u* in L.

. A number of problems usually studied by control theorists satisfy the hypotheses
in this theorem. For example, included are J of the form

(14) J(W) = B, u)+ L W)+,

icm

PROJECTION METHODS 15

where (u,v) > #(u,v) Is a symmetric continuous bilinear functional satisfying
B(u, u) = Oluli, for some 6 > 0, u » Z(u) is a continuous linear functional, and
A is a constant.

In particular, if one uses a variation of parameters expression for solutions of
(1), the cost functional

ty
J@) = S ()W x(t) +ul) ¥ u(t)] dt

0

is seen to have the form (14). Also included, of course, is the minimum norm problem,
J(u) = [u|*. In this latter case, the projected problems become those of finding
minimal norm elements of V¥, Using well-known projection methods in Hilbert
space (and the corresponding alignment condition), one can actually compute
a closed form solution for the minimal norm element %" in terms of the 4;, &, £, ‘I’AJ,

and D.

From a theoretical viewpoint, use of the above projection ideas in optimal
control problems appear to have some advantages. We are currently continuing
our investigations (see [1]) into the practical feasibility of such methods for com-
puting approximations to optimal controls.
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