icm®

162 A.P. WIERZBICKI and §. KURCYUSZ

{51 M.J.D. Powell, Amethod for nonlinear constraints in minimization pr
tion, ed. by R. Fletcher, Academic Press 1969, pp. 283-298.

[6] R.T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex
programming, to appear in STAM J. Control.

[ A.P. Wierzbicki, A penalty function shifting method in constrained static optimization
and its convergence properties, Archiwum Automatyki i Telemechaniki 16 (1971), pp. 395-416.

[81 — A. Hatko, Computational methods in Hilbert space for optimal control problems with
delays, Proc. of 5-th YFIP Conference on Optimization, Rome 1973,

blems, In: Optimi

BANACH CENTER PUBLICATIONS
VOLUME 1

ON THE MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL
PROCESSES DESCRIBED BY HAMMERSTEIN
INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNELS

L. v. WOLFERSDORF

\Sektion Math k, Bergakademie Freiberg, Freiberg, DDR

1

Let X be a real Banach space with norm || - ||, X, an open subset of X, and W a certain
set. Let T Xox W — X be a transformation and f: X, x W — R a real-valued
functional. We consider the following optimal control problem:

(1) Minf(x, w), (x,w)eXox W
subject to the process equation
2 x = T(x, w).

For this problem L. Bittner [1] has developed a simple exact method of deriving
maximum principles. He has applied his method especially to optimal control pro-
cesses governed by Urysohn integral equations with variable integration domains
and continuous kernels. T want to give here at first a modification of Bittner’s basic
theorem for this model of an optimal control process. Then I will apply this modifi-
cation to a derivation of a maximum principle in the case where the process equa-
tion is a Hammerstein integral equation with a completely continuous kernel in
a space of continuous functions. ’

2
Let Y be another real Banach space with norm || -||,, which has the following prop-
erties:
(a) X is a dense subset of Y,

(b) the embedding operator X — Y is continuous, i.e., there exists a constant
C > 0 such that

lixll, < Clixll  VxeX.

THEOREM. Let the following assumptions hold:
(i) T(x, w) has a partial Fréchet derivative T.(x ,w) at every point (x,w) of
the set B(xq, o) x Wy, ro > 0, where B(x,, ro) denotes the ball with centre x, and
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radius 1o in X, and Wy is a fixed subset of W. Ty(x, w) is a linear bounded operator
in X, which can be extended to such an operator in Y.

For every fixed we W, the relation
G Ty, W)= T(x, w)— Tiloe, w)(x: — 2|y = o(|lx; —x]l,)

Vx’ Xy echO: rO)s lel —x” - 0
is valid. Besides

SggllTx(xo,W)—Tx(x,W)H—JrO i llx—xo|l = 0,

@
Sup Tk, W—Ta(x, Wi, >0 if  |lx—xo]| = 0.

(i) [~ Tx(xo, wo)l™* exists as a linear bounded operator in X and can be extend-
ed to such an operator in Y.

(i) fCx, w) has a partial Fréchet derivative fy(x, w) at every point (x, w)
€ B(xo, 1) X Wy. fi(x, w) is a linear bounded functional on X and can be extended
to such a functional on Y. We have

®) SUD 1o, W)= fu(e, Wlly > 0 i [lx—%ol] = 0.

Then for an optimal pair (wq, x;) € Wo x X, of the problem (1), (2) the following
variational inequality is valid:
©) 8fe+df =0
Jor every pair of limits

) 8f = im0, wo) Ay,
k Y
where '
Ay, = [I—Te(xo, W)l [T (%0, Wi)— T(%o, wo)l,
and )
® 8 = lim—[fx, W)= 1o, Wo)l.
k Yk

Here vy is a sequence of positive numbers which tends to 0, and wy is a sequence of
elements of Wy with the following properties:

(9) HT(xO: Wk)" T(x(): Wo)” i 0:
(10) ”Tx(xm Wk)_Tx<xOs Wo)” -0,
| Texo, W) — Te(%o, WO)”y -0,
() —ylk—nf,xxo, W)= fuliar wolll i bounded,

1
(12) o 1T (xo, W —T(xo, wo)ll,  is bounded.
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Remark. For Y = X we get the basic theorem of Bittner [1]. In this case condi-
tion (11) can be weakened. But in some applications conditions (11), (12) for a sui-
table chosen space Y are easier to fulfil than assumption (12) for X. This is because
in the applications which we have in mind, roughly speaking, the functional f beha-
ves better than the operator T.

3
If the weak limit in ¥
(13) 3{1;[T(x0, W)= T(xg, Wwo)] =~ 6T € ¥
exists, it follows that
(14) 8fe = fu(x0, wo) 0x,
where 0x € Y is the unique solution of the variational equation
(15) Ox = Tx(xo, wo)0x+0T in ¥,

Because of (ji) the inverse operator [I— T¥(xo, wo)]™* in Y* exists, where * means
the adjoint operator and space, respectively. Therefore

(16) 8fy = L (8T),
where & is the unique solution of the adjoint variational equation
an & = T¥(xo, wo)& + fx(Xg, wo) in Y*.

Assumption (ii) is valid if the operator Ty(x,, wo) is completely continuous and
the equation [I—Ty(x,, wo)]y = 0 in Y has the trivial solution only.

4

Let D be a compact subset of a Euclidean space. Further, let U be a given subset
of the real axis R and define W as the set of all w = u(-) which are bounded measur-
able or piecewise continuous functions on D, where

(18) ult)elU VteD.
(For simplicity we only deal with the scalar case.) We consider the following integral

equation of Hammerstein type:

(19) x(s) = {k(s, NG (t, x(t), u(@®)dt, seD,

D
where G(t, x, u) is a given function with the continuous partial derivative Gx(t, X, u)
and the kernel k(s, ¢) satisfies the conditions

(20) sup { k(s, D)I2dt < e, sup {Ik(s, )f*ds < oo,
seD p 1eD p
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and
flim § lk(s, ) ~k(o, DPdt =0 Vo eD,
s=0 p

(21)
lim { |k(s, )= k(s, O)?ds =0 VoeD.
t-a p

Further, the following functional is to be minimized:
2) ol JF (e, x(0), () at) = Min1,
b

where @(z) is a given function with the Lipschitzian derivative ¢'(z) and F(z, x, u)
is a given function with the continuous partial derivative Fy(Z, x, u).

We treat problem (19), (22) in the space X = C(D) of continuous functions
on D and put ¥ = L,(D), the space of quadratic summable functions on D, Let
(16(s), Xo(s)) be a pair of optimal functions for this problem. We make the assump-
tion that the homogeneous linear integral equation

(23) h(s) = { ks, 1) G (t, xot), uo(t)) ht) dit

D

possesses in C(D) only the trivial solution. Then we can define the H-function

@) HE W = —¢({F( xo(0), uo®) dt) - F(s, x0(s), 1)~
D

=G (s, x0(s), u)- Sk(t, HP@)dt (seD,uel),

D
where #(t) € L, (D) is the solution of the linear integral equation

@5 () = Gu(s, %o(s)s uo(®))- $k(t, ) (1) dt +
D

+9 (,§ F(t, %o(t), uo(t)) dt) - Fu (5, %o(s), 4o(s)).

For this function the maximum condition
(26) Max H(o, v) = H(o, Uy (0))
velU

is valid for every point ¢ € D which is a point of continuity of uq(f).

5

For details and some extensions the reader is referred to the following paper of the
author [,,Mathem. Operationsforschung und Statistik” 6 (1975), pp. 609 ff).
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