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ON THE CONTROL OF STABILITY
IN NONLINEAR MECHANICS

HERBERT BECKERT
Sektion Mathematik, Karl-Marx-Universitdt, Leipzig, DDR

In this paper I show how to control stability on some typical examples of nonlinear
mechanics. Clearly, in general, this problem seems to be of considerable interest
because of the increasing demands on material in all technical branches. Interesting
examples of nonlinear systems losing stability are the buckling of plates and shells
or kicking of bars and rods under increasing boundary and volume forces.

To deal with the first example denote by G+S'in the x, y-plane a simply connec-
ted domain with regular (*) boundary § ‘& C***#occupied by the plate under boundary
forces K.(s), K, (s), sc S, acting w1th1n the x, y-plane. On a portion $ of S the
boundary forces K %(8), e W(8), s = S may be varied arbitrarily, while on §— S the
forces Ky(s), K,(s) are fixed. Let G, be an interior subdomain of G. After a general
theorem concerning the solutions of elliptic boundary value problems, T proved
in [3] that an arbitrary consistent stress distribution

Oxx s ny: Oyy on GO

may be approximated uniformly in C°-norm by the solutions of the first boundary
value problem for the biharmonic equation (1) by suitable choices of the boundary
forces along § only. A similar result holds in the general three-dimensional case for
the solutions of the classical boundary value problems in linear elasticity, [6]. For
convenience we note the representation formula for the first boundary value problem
for the plate:

o Adu=f, u@) =g(s) () = p(o)
fx,9) = C o), pls) e CHH(S);
u ou
o) e IS Ku(o)ds, - = .S K()ds, Po<S,

(1) H,,, , are the well-known Sobolev spaces with Ho, » = Ly, and C"*%, 0 <» < 1, the Banach
spaces of m times »—H continuously different] J].ablﬁ,iunctlons with the usual norms ||||m,2 and
14| vs respectively,
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3) u(§, n) = UK, K,.)+B(f),

U, n, Ky, Ky) = “s"ln S @(s) %‘; G 3, & )= () AG(x, p, §, 7)ds,
5

B ) = g |0 6 may

@ Uy = 9';:;" Ugy = ~Oxys Uy = Oxx,
G(x, y, & n) being the Green function, and u(x,y) = the Airy stress function,
Clearly, boundary forces may be allowed to vary on a boAundedA set U(S) along the
window & only in practice. Let the control domain U(S) = K, K, be a bounded
closed convex set of a sufficient regular Sobolev space, of a reflexive Banach space
or of a C™*#-space; then we have the theorem, [4]:
THEOREM 1. For an arbitrarily given stress distribution

Orxs Oxy» Oy 0N Gy
there exist optimal control forces K., ]E’y < U(.§‘) such that the corresponding stresses
Gz, Ouy, Oyy calculated along (1), (2), (4) solve the minimum problem

Min = Max {|oy— kx|, s [Oyy— 05|},
Kx,Kch(S) x,‘yeGo {l xx XXy ’I » yyl}

The proof is classical, using the weak compactness of U(S‘) in the first two cases
and complete continuity arguments concerning the linear transformation Ky, K,
g {'fxm Oxys ay.v} along 0, 2), 3), @.

Remark. In the case U(§) [ C"*"(SA), k22, U(ﬁ‘) being then a compact set
in the C*norm, we can choose G, = G'in our theorem using the bounded dependence
of a solution of (1) in C**# on jts boundary values in C*+#(S) and on Sf(x,y) = CH
because of the fundamental Schauder estimates.

We now arrive at our main problems:

The buckling of a thin plate can be described —as is well known by a nonlinear
bifurcation problem corresponding to the von Karman~F8ppl system

&) @ dAutwi—weywy, =0,
() YR A AW+ Wty ~ 20y Uy + Wy gy = 0
under the boundary conditions

(6) (8 clamped plate: w(s) = %: =0, se8§,
(b)  supported plate:  w(s) = Aw(s) = 0,

. 1
h = thickness of the plate, A=) = 9%, v being the Poisson number, w(x, ¥)

the displacement of the middle surface of the plate in the z-direction and u(x, »)
the Airy stress function,
If

® Ki(s) = AKu(s);  Ky(s) = AKy(),
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the plate buckles for discrete critical forces 4K, L K,, j =0,1,2, ..., 4, being
the characteristic values of the nonlinear eigenvalue problem

@ Tw+NwW)w+ALw =0
under the boundary conditions (6a) or (6b)
Tw = 44w,
Lw=— (i (Upy W= Usyy) 4 (U = nywx)),
y2h \ Ox dy

Nw)w = L(B(w), w).
To get (7) we solve equation (5a) by (3) and substitute jt in (5b), setting f
= Wi, — WyxW,, and introducing (x).
® Tw+ALw =0
under (6b) or (6a) is the Fréchet eigenvalue problem corresponding to (7) with

enumerable infinite discrete eigenvalues 2;, —o0 < A4; < 0o. (8) can be put in
variational form under (6):

) (Tw, w)o— A(Lw, w)o — Extr.

(Lw, W)y = S Uy Wi~ 2Usy We Wy o+ Upe w2 dxdy,
CE .

(Tw, w)o = { (Aw)*dxdy.
E
The bifurcation problem (7) has been solved in [5], where the authors use the
theory of critical points, proving the eigenvalues ; to be bifurcations points of (7).
To control the stability of our plate on U(§') means in practice to control the
absolute least eigenvalue 4 of (8)
1 ( 1 1 )
= = max (-— —-—1J,
J)
(10)

1 . 1
max (Lw, w)o = —, min(Lw, W)y = ——,
( do e ( Yo o

under the constraints (Tw, w), = 1 and (6a) or (6b). We apply the remark to Theorem
1 and simple variational arguments for (10) to prove, [4]:

THEOREM 2. There exist optimal control forces 12‘,,, 12', ] U(ﬁ) « C"*“(ﬁ),
k = 2, for which the least eigenvalue X in (10) attains its maximum, o thaAt our plq\te
is most stable with respect to all boundary forces K., K, = S—8, K, K, = U(S).

Remark. According to our general theorem mentioned before, one may approxi-
mate an arbitrary consistent stress distribution Uy, Usy, Uy, on G, uniformly by
suitable choices of K, K, along § only. It is easily proved that therefore the least
eigenvalue 7 in (10) can be made arbitrarily small, the plate becoming highly in-
stable in this case.
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On the other hand; if we assume the small strip G— G, to be of extreme stifness
or clamped but so that displacement in the x, p-plane are not reduced, we can prove
the opposite statement in the same manner: our plate can be made extremely stable
if suitably controlled by the forces along s only, [4].

All that I have said about the control of stability can be generalized to plates
which are supported over partial subdomains G,, Gj © G, so that the plate can only
turn towards the free side. The corresponding buckling problem has recently been
solved by my pupil, Miersemann, [8]. To construct the branch of bifurcation here,
one has to solve the variational problem

an

under the boundary conditions (6) and the constraints

(11a) (Tw, w)o—5 (Nww, w) = s > 0,
wz0on G, w<O0ondgj.

(Lw, W)y — max

Since we can apply our control mechanism to (11) from U(@) as before, it is possible
to control the branch of bifurcation along (11a), s > 0, and thus its limit, proving
that all the remarks remain valid as stated.

To control stability in general systems 4 of nonlinear elasticity we introduce
the important formula (12) of B. Trefftz [9] for the second variation of the elastic
potential of 4 in a deformed state Z derived under transparent assumptions (13):

) Q;=»§S(Z <x>3£‘-k—fffk~ 2a)dx;
. A pank

a means here the classical expression of the elastic potential in linear theory of elasti-
city and o, is the stress tensor of 4 in the state Z, In his paper [9] E. Trefftz, in order

to derive (12), splits the stress tensor in the neighbouring state Z', Z —+ Z': k;,,
into two parts,

(13) klw = Oppt Ty

and proposes to calculate 7,,, the additional stresses arising from Z — 2, within

the framework of the linear theory of elasticity.
The state Z is stable iff 0, > 0 for all admissible displacements 1(x). The least
positive eigenvalue 1, of the classical cigenvalue problem

(14 min Q, = Ay > 0,

[1ul]g, 251
relevant to the elliptic case, measures stability to some extent. The same is teue for
the greatest lower bound A5 of

1s)

min Q, = Ag >0

1u/lg,a=1

such a positive bound follows from a theorem of Hestenes in thie posifive elliptic
case (14). Conversely, ellipticity can be derived from (15).
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In my paper [2], I gave a rigorous mathematical description of the deformation
of an elastic body G+ < C*** under body forces X = C* and given boundary
displacements @(0) = C**#, ¢ € S, in nonlinear elasticity under the assumptions
(12), (13) of Trefftz. Our proof remains valid in far more general cases concerning
the second variation (12) and the transition relations (13) up to the so-called fading
memory models.

Replacing X, ¢ by AX, Ap, 0 < A< 1, we first describe approximately in our
theory [2] the deformation of G+ when passing the curve AX x Ap e C¥x C2+#
as follows: For an arbitrary subdivision0 < 4; < 1, < ... < 4, = 1, Max(4;—4_;)
= g, the corresponding deformation chain G — G — G, — ... = G, may inductively
be defined by the transformations

(16) A = x4, 1=0,1,2.

The strains 2’ (x!) over G' describing the transition G' — G**+! are dcﬁned as the
solutions of the variational problems

1 dvk 0o .
un 7 ( (> a,’i" Fra )dx’+(zl+1 — 1) (X, ©)o — min,
E *
(18 (hss— M) gp(e’) = ("), o'es’;

then the new stresses over G**1 are given by (?)

19 ol (1) = ol (x) + Ty,

_ 67),, 6'0,,
according to (13). Clearly, we have to assume that our variational problems (17)
are elliptic and the transformations G' » G'** remain topologic. Since there is no
loss of regularity, we may proceed to 4, = 1. Along our chain the fundamental
estimates of Schauder type are valid [1]:

(20) 101244 S AAL(H sy, € Ao, Raw) (1XNa(G) + I#l]240(GD),
the constant L depending on
H,,, = bound of the C***-norms of the coefficients o}, in (17),
Ry, = bound of the C**#-norms for the boundary representations of S',
¢ = ellipticity constant,
Ao = least positive eigenvalue in (14) under zero boundary conditions.
Putting (16) together from [ = 0, 1, 2, ..., k, we receive

2]

In [2] I proved the convergence of the deformation process (20) for & — 0 in the
Banach space C**#(G)x C°, receiving a rigorous description, x* = f(4, x), for the
deformation G — G* when passing the data curve over states of equilibrium. The

(M = shear modulus),

:f.’,‘(x),xGG»)Gk’ j=123.

(* In (17) we have used the summation convention.
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convergence proof is first limited to an interval Z,: 0 < A < s, but we may proceed
further till at least one of the following three cases occurs.

(1) For A — s, the deformation tends to instability Ay ~ 0, or the ellipticity
constant ¢ tends to zero,

(2) C'*H-norms of stress components of, tend to infinity,

(3) the surface 0G* of G* tends to one with twofold points, [2].

After this report on my paper [2] we are able to formulate and prove our optimal
control problem in general nonlinear elasticity theory.

Let G’ be an clastic body in a deformed state Z with the stress distribution
ouw(X) < C*4(G") arising from G by solving the first boundary value problem for
boundary displacements ¢;(¢) and volume forces X according to our theory just
mentioned. p*(0*) € U(S*) c C*+#(§%), 0 < p < u' < 1, supp ¢p*(o*) = $* = &,
may be a bounded convex set of boundary displacements, containing the zero point,
over an arbitrary part of §'. The state Z over G' is assumed to be stable according
to (14), (15) with stability constants Aq, Ag. For simplicity, U(S*) may lie in a suf-
ficiently small ball, so that our existence proof for the continuation of the deforma-
tion G — G' from G' under the boundary displacements
) { *(*), o =oc*eS* S,
7o) = el —
remains valid along the whole curve Ap(0’), 0 € A
is no difficulty in proving this choice, [2].

THEOREM 3. There exists at least one optimal control displacement p°(o”) € U(S*),
s0 that the corresponding equilibrium state with (22) has a maxintum stability constant
Ao with respect to U(S*).

Proof. We consider the totahty of equilibrium states corrcspondmg to displace-
ments (22). The stability constant 4, in (14) can be proved to be a continuous function
of p(c) over U(S*). This follows from the fundamental Schauder estimates (20),
the transition relations (13), and general continuous perturbation theory or simple
variational considerations, [2]. Our proof is now an easy consequence of the compact-
ness of U(S*) in the C***-norm.,

In a similar way we can solve the problem of constructing a displacement
curve of “optimal directions” in the variety of curves

23 P(4, o*) = Z PMeMAd,  pHe®) e USY),

(22)
1, for all p(a’) € U(S*). There

»
and their limits for 4%, -0, ¥ 44, = s, corresponding to an arbitrary division
=1

of a fixed interval I,: 0 < 2 < 5, < . To approximate the desired curve we de-
termine for each 4, 0 < i < r, according to our inductive caleulation scheme (17),
(19), #(0*) in (23) as a solution of controlling the stability constant 4, in the follow-
ing state Z;,; optimally in the way just mentioned. By the compactness of U(S*)

our existence proof directly leads to the desired solution.
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So far we have considered the first boundary value problem. Only some modifi-
cations are needed to generalize our theorems to the second boundary value problem,
in which boundary forces are prescribed.
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