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1. The problem

If nonlinear multidimensional integral equations serve as the mathematical tool,
describing a process, one is involved in a lot of irksome calculations, which suggest
the adoption of an abstract point of view, introduction of a model of the process
and investigation of the model instead of the actual process. This paper presents
such a model. In order to formulate it, let us assume that X denotes a (real) Banach
space, M a certain subset of X, W an arbitrary set, T a mapping of X' x W into X,
and f a mapping of X x W into the set R of real numbers.

The problem under consideration is:

Minimize f(x, w) subject to x = T(x,w), we W, xe M.

We interpret x as a state, w as a control, W as the set of feasible controls, M as
a state constraint set, the fixed point equation x = T(x, w) as the equation of a pro-
cess, and f(x, w) as a performance index.

2. Assumptions

In order to grasp both the process equation and the performance index simultaneously,
it is convenient to introduce an auxiliary real variable &, to pose

) y=46, Y=XxR, S0 w) = (T(x’ w), f (%, W))

and to study the fixed point equation y = S(y, w), which is equivalent to the two
relations ‘

@ x = T(x,w), &=fCxw).

We consider Y a (complete) normed space under the norm ||y|| = ||x{|+|&] and
a pseudonormed space (a By-space) under the pseudonorm |y| = (|xl], |&)* e R?
(Kantorovitch [3], Schroder—Collatz [2]). < in R? is to be understood component-
wise; superscript * denotes transpose. We suppose that § has a partial Fréchet
derivative S,(y, w) with respect to y for all (y, w), which is equivalent to the assump-
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tion that T and f have partial Fréchet derivatives T(x, w) and f,.(¥, w) with respect
to x for all (x, w). Obviously,

3 Sy(y, WAy = (Tu(x, wdx, fu(x, W) Ax) VAy = (dx, 48 e Y.

Let yo = (%o, &), Wo € W satisfy the fixed point equation y, = S(yo, wo). Then
we call the (linearized) equation

“ Ay = Sy(yo, wo) Ay +h
variational equation corresponding o (yo, Wo); h denotes any given element (g, ¥) & ¥

and Ay = (dx, 48) e Y a solution. The variational equation is equivalent to the
following two equations

(1) Ax = Ty(xo, wo)Ax+g,
(5.2) AE = fu(xo, wo)dx+y.

(5.1) is called the variational equation corresponding to (x,, wo). Equation (4) is
uniquely solvable for each % e ¥ if and only if (5.1) is uniquely solvable for each
geX. .

In the sequel we require the existence of certain subsets W, < W containing
the control w, such that the derivative S, is continuous with respect to y at the point
Yo uniformly with respect to all controls w € W,. This means that the continuity
module

(6) w(r) 1= w(r; Wy, o, ¥o)
L= sup {”Sy(ya w)_‘Sy(yO: W)”l ||J’—'J’o|| < r, we WO}
tends to 0 if r approaches 0. Such a W, will be called a set of varied controls for w.

3. Existence of varied states, associated with varied controls

Given a pair yo, W, satisfying yo = S(yo, W), the question arises whether it is possible
to embed yo = (xo, &) into a family of neighbouring states y corresponding to
other feasible controls w. A partial answer is given by

THEOREM 1. Assume that the variational equation (4) corresponding to (y,, wo)
(or equivalently, (5.1)) has a unique solution for each given h = (g, v) € ¥, suppose
that b denotes || (I~ Ti(x,, wo))~Y||, Ly is an arbitrary positive number < 1, W, is
a certain subset of W such that wo € Wy, w(0) = w(g; Wo, wo, o) =+ 0 for o=0
and r denotes a positive number satisfying the condition w(r) < L/2b.

Then the fixed point equation y = S(y, w) has a solution y = y(w) for each
control w € W, satisfying the restrictions

1—

M 117G, =T wolll < U550 17300, )= T, woll < 52

This solution is unique in D = {y = (x, £)| [|x—xo|| < r} and admits the decompo-
sition

® L) = yotdy+y,
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where
Ay = [I-8,o, wo)l " [S(Wo, w)—S(o, Wo)ls

L b
|"7| = [Ll] _1”_"24‘1" “T(J’o, W)"‘T(yo, w())“y
2

Ly = o(r)+ || fx(xo, w)—fx(Xo, wolll +]|fs(x0, woll| Ly -
Proof. Define
R(y) = R(y, w)
= (yo+ [—8y(yo, w1 [S(, w)— S0, W) —Sy(Vo, W) O0=yol)+
+ [~ S8y(vo, Woll ™ [S(o, W)= S(vo, wo)l+
+ [~ 8,(yo, wo)l "4 [Sy (o, W) — Sy (Yo, Wl (¥ ~¥o)
1= R+ R(1) +Ra ().

Then y = S(y, w) is equivalent to y = R(y). For all y; = (x;, &) €D and we W,
the first item R, of R satisfies the inequality

IR1(J’1)—R10’2)|
= (1|l =Tu(xo, woll [T Cx1, W)~ Tz, W) — Tlxo, w) (e ~ %I,
(ILf Gey s W) =S (32, W) —Fi(X0, W) (6 —X5)] +
+/fu(X0, Wo) [T — Tu(0, W)l *[T(xs, w)—T(xz, W)—Ti(xg, W) (xy "xz)]”T)
< (b (r), )+l flxo, wolllbex(r))¥[lxy —%al1;

the second item R, does not depend on p, thus |Ry(y1) —Ra2(32)| = (0, 0)" and the
third item R, satisfies

IRs(J’1)—R30’2)|
= ([l[—Texo, wo)l " [T (x0, W)= Tulxo, Wo)] (61 —x2)Il,
| Lfe(xo, W) —F(Xo, Wo)l (x4 —22)+
+ fiul¥os Wo) [T = T (g, wo)l ™4[ Ts(X0, W) — Taelxo, Wo)] (1 —X2)| )"
< (BI| T(eo, W)= Telxo, Wolll, [1fs(xo, W) =fu(¥o, wolll +
+b (/%05 wolll * [ T(xo, W) = Tx(xo, woll| )11 —Xal| -
(i) If w e W, fulfils (7), R satisfies the generalized Lipschitz condition

|R(}'1)’“R(Yz)| < Llyl —y2| Vyi,y2€D,

) L, 0
where L denotes the (2, 2)-matrix L = [ L, OJ .

& .
(i) )" L* converges (strongly) and represents the inverse
¥=0

- = Lo
1—L1 Lg 1"‘L1
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(iii) If w € W, fulfils (7), the pseudometric ball

{y e Y| [y—vol = (lx—xoll, 1E—&D"™ < (T—L)"*|R(¥o) — ¥l

= (]:_]“L"l*”[l" Ti(xo, woll™' [T(Xo, w)—T(xo, wolll, ) }

is contained in D = {y| ||x~x,]| < r}.

Thus, all the conditions of Schréder’s convergence theorem (cf. [2], §12) for
the iteration procedure yi.; = R(y) (k = 0, 1,...) are satisfied. The iteration pro-
cedure converges to a solution y = y(w) of y = S(y, w); this solution is unique in D,
and we get the error estimation

[yW)~yi| = (I—~L)™* Ll ~yo} = [flj T 1760, W) — Txo, wo)ll.
2 g 1
Pose
7 = p(W)—yi,
in order to obtain the proposed decomposition y(w) = yo+ (¥, —Yo)+7. m

Theorem 1 shows that the solvability of the fixed point equation y = S(y, w)
depends on the quantities

1T (X0, W)—T(%0, wolll, 1| T(X0, W)= T, Wo)ll.
Beyond this, an estimation of the deviation |y—yq| involves the values
[f (o, W)=f(xo, woll, |1 fx(¥a, W)—Fx (%o, wo)ll.
Therefore, let T(w) denote the quantity
® (W) = [1S(os W)= S0, Woll +11Sy (e, W)= Sy(¥o, wo)ll,

and let us say that the sequence {wy} of feasible controls converges to wo if (wy)
approaches 0. 7(w,) — 0 if and only if for all four quantities
1705 wi)—T (ko Wollls ves |1 flXos W) —Se(¥o, Wo)l| = 0.
Theorem 1 immediately implies:
THEOREM 2. If W, is a certain set of varied controls for wy (l.e. wo € Wy and
w(r) = (r; Wy, wo, o) > 0 for r—+0) and {w,} = W, is a sequence converging
to W, then for sufficiently big k there exists a solution y, of the fixed point equation

Y = 8(y, wy), this solution y, is unique in Dy = {y € Y| ||x~Xo|| < 1.} and admits
the decomposition

Ve = Yo+ dyc+m
with
Ayy = [I-S,(v0, W)l [SWo, W)~ 8(s, Wo)l,

le b L k
a0 < [ sz] T 1o, )= Txo, wall < [ L:,,] clidydl,
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where
rr = 2b)|T(x0, wi)—T(xo, wolll, ¢ = 2b|11=Sy(yo, wo)ll,
11 Ly = max {2bo(ry), 2b||Tx(x0, W) — Tx(%o, wolll},
Lok = o(r)+[1fe(xo» wo) =fe(xo, woll +11/e(%0, wol[ Lix.
Remark 1. The phrase “for sufficiently big k” can be replaced by the more
precise statement “for all k such that L,; < £”. Obviously, ry, Ly and Lo — 0
if k — co; thus the residual part 7, of the increment yy—y, approaches 0 more

quickly than the main part Ay,. Note that Theorem 1 remains trivially valid, if
r=r, or L; = L, vanishes.

4, Directional limits

We assume W, to be a set of varied controls for wq (i.eA, w(r; Wo, wo, ¥o) = 0
for r — 0) and {w,} to be a sequence of controls e W, converging to wo (i.e., T(wy)
— 0). If there is a corresponding sequence {y,} of positive numbers approaching 0
such that the limit :

(12) 88 1= (8T, of) := 1}327 —;";— [So, W) — S0, Wo)l,

exists, we call it a directional limit generated by {w}, and its components 7, df
common directional limits.
If S is a directional limit generated by {w;}, then

(13) SWo, W) — 8o, Wo) = Y 0S+0,(¥i),

where the correction term o, (vy) satisfies ||yi* 0, (¥il| — 0 for k — co. If y; denotes
the solution of the fixed point equation y = S(y, wi) according to Theorem 2, we
obtain a new (asymptotical) representation of yy, namely

14 Vi = Yo + vell—Sy(0, woll ™ 88 +05(¥4),

due to (10), where again |[yg* o,(y©l| — 0 for k — oo,

Remark 2. In some cases, e.g. in the case of Volterra integral process equations,
the directional limits 87 do not exist as elements of the original state space X or as
limits with respect to the norm (topology) of X, but they exist as elements of a bigger
topological space or as limits with respect to a weaker topology (norm). In such
cases we are usually concerned with the following situation:

9 [f (%o, W) —f (%o, Wo)] converges towards a df. Though yi'[S(o, wi)—
—8(¥o, wo)] and yitdy, (cf. (10)) does not converge in ¥ = X'xR, it remains
bounded. As a result, i ', approaches 0. X is contained in a locally convex topo-
logical vector space X, whose topology induces a relative topology on X weaker
than the original norm topology. Thus a sequence converging in X appears to be
also a sequence converging with respect to the X’-topology, Further, [I— S,,Syo , ‘f")]-l
admits an extension 1o a linear, continuous mapping of the product space Y = XXR;
this extension is denoted in the same way. An example for such an X is the original
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set X endowed with the weak topology. Under these hypotheses formulac 13),
(14) remain valid; but the correction terms 0,(y) are now elements of Y and yi? o,(yy)
— 0 with respect to the Y-topology.

5. Optimality conditions

Obviously, the set & of all directional limits, associated with (y,, wo) and generated
by all subsets W, and sequences {wj} has the property:

IféSeS, 1> 0, then 16SeC.

In all the cases we have in mind, & has also the property:

(i) Xf S, and 4S, € G, then S, + 485, € S too. As a result S and also
(15) R = {yl y = [I~Sy(yo, wo)]~* &S, 88 directional limit}
turn out to be convex cones.

THEOREM 3. If the constraint set M is a convex set with a nonempty interior
int M and 8 denotes
(16) L={yy=(x8, xeintM—xg, &< 0},
then a necessary condition for the pair (xo, w) to be an optimal solution is the relation
KL = @, where yo = (%, &), & = f(Xo, Wo).

Proof. Let (xo, wo) be optimal. Suppose the contrary: (m-—x,, &) eRng.
Then for meint M, & < 0, there is a directional limit 65 such that (m—x,, &)
= [I—8,(yo, wo)]"* 88 and a convex neighbourhood N of the origin such that
m+-N < M. Since xo € M and M is convex, we have (1—9)x,+ym-+yN < M for
all 0 < y < 1. 45 is generated by a certain sequence {w,}. To each wy, k& > 1, there
corresponds a solution y, = S(yx, ;). Formula (14) implies

Ve = (%, &) = (A —y)xo+ysm-+0,(n0), So+yré+0s(ve))s
where 0,5 and 0, denote the components of 0,. Since yit0,,(y,) — 0, there is a
ky such that y5*0,.(») € N for k > ky. This entails
= T, wi) = (L=2)Xo+yem+os(p)eM Vi > ky,
§i =00, i) = Eo+p(E+vit o)) < & VE > 1.
Hence we would obtain feasible pairs (x;, w,) with cost functional values &, < &,
= f(%o, Wo), which contradicts the optimality assumption concerning (¥, wo).
Remark 3. In case the directional limits S belong only to an extended topo-
logical vector space ¥ = ¥x R mentioned above, the convex constraint set M can
be considered as the intersection M N X of any convex body M < ¥ with X. Define

({6) R =0l y=(x8, xeintM—x, & <0},

where the interior refers to the ¥-topology. Then the condition & 1 § = @is necessary
for the optimality of (x,, wo), since x, € M N X implies x; € M.
THEOREM 4. [f the constraint set M is a convex body and the set of all directional
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limits 0S a convex cone, then a necessary condition for (x,, wo) to be optimal is that
there exist a nonnegative number o and a linear continuous functional x* over X such
that the variational inequality

(A7) (x*+ofilxo, wo)) [I— Tu(Xo, wol ™ 0T+0éf 2 0 V48S = (6T, &f)
and the maximum condition

(18) x* X = max x*x
xeM

hold (x* and o not both zero).

Proof. Stand @ (cf. (15), (16)) are convex subsets, KnL =0, int 8 3.
Owing to a well-known separation theorer there is 2 number o and a linear con-
tinuous functional y* over Y, i.e., a linear, continuous functional x* over X and
a real number ¢ such that

() y*y = x*x+of>a VyeSf,

(i) y'y<« Vyel

Because K is a convex cone with vertex 0, (i) yields 0 > «. Since x, € M is the
limit of a certain sequence 7 € intM, the number 0 is the limit of a sequence of
negative numbers & and y, = (mx—Xo, &) € &, (ii) implies 0 < o. Therefore, « = 0.
Now on account of definition (15) of Kit is easy to see that (17) gives the equivalent
representation of (i). Evidently, ¢ > 0. If x denotes any element of intM and &
any number < 0, from (ii) it follows that x*x+0& < x*x,, and hence (18)."

COROLLARY. Define a linear continuous functional over X
(19) p = (¥*+0fu(xo, Wo)) U~ Tx(%0, wo)l™*

= ([I““ To(%o0, Wo)]—l)* (x*+0fx(x0, Wo))
= (I-T¥(x,, Wo))_l(x* +0fx(%0, Wa)),
then v is determined by the following adjoint equation

(20) p = TE(xo, wo)yp+ (x*+0fu(%, Wo))
and the variational inequality can be written in the following way:
@1 pOT+0d =0 VT, §f)eC.

Remark 4. Tn case the directional limits 07 exist only in an extended space X,
we obtain a continuous extension of [I—S,(yo, Wo)]™* on ¥ = Xx R lzy means of
a continuous extension of [I— Te(Xo, wo)]™* and of fi(xXo, wo) onto X, which we
denote by the same symbols.

‘We have only to pose

[T—Sy(vo, woll* (g, ¥)
= ([~ Tu(xo, Wo)l™8, fulo, Wo)I— Tu(¥o, Wo)l '8 +)

for each (g,y) e ¥x R. Tf such continuous extensions are available and the other
Y
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hypotheses of Remarks 2 and 3 are fulfilled, then propositions (17), (18) of Theorem
4'remain valjd with the distinction that x* denotes a certain linear continuous func-
tional over X and M in (18) has to be replaced by any convex body M < ¥ with
M=MnX.

As to an application of a previous version of this model refer io [1].
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1. Introduction

Let E" be a Euclidean space of state-vectors x = (X, ..., X,) with the norm ||x{|

e
= ]/42 x? and let Q(E") be the metric space of all nonempty compact subsets of
=1
E" with the Hausdorff metric
h(F, G) = min {d: F < S4(G), G = Su(F)},

where S,(M) denotes a d-neighbourhood of a set M in the space E".
Let us consider an object with a behaviour described by the differential inclusion

It X e P, %),

where F: E'x E"— Q(E")is a given mapping. The absolutely continuous function
x(t) is the solution of the inclusion (1) on the interval [t,, £,] iff the condition X(z)
e F(t, x(£)) is valid almost everywhere on this interval.

On the one hand, the differential inclusion is the extension of ordinary differential
equations

2) % = [t x),

when the function f(z, x) is singlevalued. On the other band, this extension is not
formal: for many different problems can be transformed into differential inclusions
and the development of differential inclusions permits the solution of those problems.
For example, A, F. Filippov [1] investigated with the help of differential inclusions
the solutions of differential equation (2) on the sets where the function f(z, x) had
discontinuities. N. N. Krasovski [6] used a differential inclusion for constructing
a strategy in differential games. Let us consider the connection of differential
inclusions with some other problems.

The optimal control problem was first considered by L.S. Pontryagin and
others [8] for systems described by the equation

3) X% =1t x, ).

3 Banach Center
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