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hypotheses of Remarks 2 and 3 are fulfilled, then propositions (17), (18) of Theorem
4'remain valjd with the distinction that x* denotes a certain linear continuous func-
tional over X and M in (18) has to be replaced by any convex body M < ¥ with
M=MnX.

As to an application of a previous version of this model refer io [1].
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1. Introduction

Let E" be a Euclidean space of state-vectors x = (X, ..., X,) with the norm ||x{|

e
= ]/42 x? and let Q(E") be the metric space of all nonempty compact subsets of
=1
E" with the Hausdorff metric
h(F, G) = min {d: F < S4(G), G = Su(F)},

where S,(M) denotes a d-neighbourhood of a set M in the space E".
Let us consider an object with a behaviour described by the differential inclusion

It X e P, %),

where F: E'x E"— Q(E")is a given mapping. The absolutely continuous function
x(t) is the solution of the inclusion (1) on the interval [t,, £,] iff the condition X(z)
e F(t, x(£)) is valid almost everywhere on this interval.

On the one hand, the differential inclusion is the extension of ordinary differential
equations

2) % = [t x),

when the function f(z, x) is singlevalued. On the other band, this extension is not
formal: for many different problems can be transformed into differential inclusions
and the development of differential inclusions permits the solution of those problems.
For example, A, F. Filippov [1] investigated with the help of differential inclusions
the solutions of differential equation (2) on the sets where the function f(z, x) had
discontinuities. N. N. Krasovski [6] used a differential inclusion for constructing
a strategy in differential games. Let us consider the connection of differential
inclusions with some other problems.

The optimal control problem was first considered by L.S. Pontryagin and
others [8] for systems described by the equation

3) X% =1t x, ).
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This problem may be transformed into the determination of the optimal solution
x(t) of the differential inclusion

kef(t,x, U= {f(t, x,u): ueU}.

Knowing the optimal solution x(¢) it is possible, with help of Filippov’s implicit
functions lemma [5], to construct for system (3) a control u(z) which produces this
optimal solution. Note that control system (3) may be transformed into a differential
inclusion form even in the case where the set U depends on time and state, i.c., is
of the form U(Z, x). On the other hand, inclusion (1) may be considered as a control

system with changing control domain
=90, wvefFx).

It should be noted that optimal control problems have stimulated very much the
development of the theory of differential inclusions.
The implicit differential equation

St x, %) =0

can also be transformed into a differential inclusion form:

x e F(t, x) = {v: f(¢, x, v) = 0}.
On the other hand, inclusion (1) may be considered as an implicit differential equation

o(%, F(t, %) = 0;
here o(p, 4) denotes the distance from a point p to a set A4,
o(p, 4) = min ||p—all.
aed

A system of differential inequalities

St X% <0, i=1,..,k,
may be transformed into the differential inclusign

XeFtx) = {v: fl{t,%2) <0, i=1,..,k}.

On the other hand, inclusion (1) may be considered in the case of F(#, x) being con~
vex as an infinite system of differential inequalities

@9 < e(Fit, %), 9), pesi0)
here ¢(F, ) is the support function of the set F:
e(F, y) = max(f,v).
Jfar

2. Time optimal control problem

Let My, M, be nonempty closed subsets of E", The solution x(z) given on the in-
terval [4, t,] transfers M, to M in time 2, —1, if the conditions x(t,) € My, x(t;)
e M, are satisfied. The time optimal control problem is to determine the solution
of the inclusion (1) transferring the set M, to the set M, in minimal time.
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MAXIMUM PRINCIPLE. Assume that the support function c(F(, x), p) of the
inclusion (1) is continuously differentiable in x and the solution x(t), to S < ty,
transfers the set M, to the set M,. We shall say that the solution x(t) satisfies the
maximum principle on interval [t, t,] if there exists such a nontrivial solution (t)
of the adjoint system

@ P —ac(F(t,a ;(_t)_)_,—qi)_

that the following conditions are satisfied:
(A) the maximum condition

(x(2), () = (F(r, (1), p(®))

is satisfied almost everywhere on the interval [t,, #;];
(B) the transversality condition on the set My: vector p(to) is the support vector
for the set M, at the point x(Zo), that is,

C(Mo, 1l)(fo)) = (x(to), (to));

(C) the transversality condition on the set M,: vector —u(t,) is the support
vector for the set M, at the point x(z,), that is,

' e(My, —p(t) = (x(t2), —p(t1)-

3, Necessary condition of optimality

A multivalued function F: E" — Q(E") is called measurable if for any closed set
P < E" the set {x: F(x) nP # @} is Lebesgue measurable. The continuity and
lipschitzianity of the multivalued function F(x) is defined in the usual way. For
example, the function F(x) satisfies the Lipschitz condition with constant L if for any
points x, x’ € E" the inequality

h(F(x), FGe)) < L+ llx—|

is valid. The number |F| = h({0}, F) is called the modulus of the set F.

THEOREM 1. Let the multivalued function F(t, x) of inclusion (1) be measurable
in ¢t and satisfy the Lipschitz condition in x with a summable constant L(t) and |F(¥, x)|
< g(f) where g(t) is a summable function. dssume that the support function ¢ (F(t, x), )
is continuously differentiable in x, the sets Mo, M, are convex and the solution x(t),
1o < t < 1y, transferring the set M, to the set M Is optimal. Then this solution satisfies
the maximum principle on the interval [to, t,]. Moreover, the condition

C(F(tl’ x(tx))a TP(’l)) =0
is valid.

The proof of Theorem 1 follows the plan suggested in [8] for systems of type
(3). The main difficulty is to define the variation of the solution. Here instead of

@
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the classical theorem on differentiability of solution with respect to the initial con-
dition (see, for example, [7]) it is necessary to use Theorem 2 stated below.

Let the function f: E* — E* satisfy the Lipschitz condition. The set of all partial
limits of the gradient of this function at the point x4/ when 4 ~ 0, that is,

af(x) = kﬁf"g Vf(x+h),

is called the subdifferential of the function f(x) at the point x.

THEOREM 2. Let x(t), to < I < t, be a solution of inclusion (1) with the initial
condition x,, let y(t) be a solution of the adjoint system (4) corresponding to x(t)
and let 8x(t) be a solution of the differential inclusion

Sk e aw[gf(F(l_’%g.)) ! w@)k dx

with the Initial condition 8x(t,) = h, ¢ > 0. Then there exists such a y,(t)-solution
of inclusion (1) with the initial condition y,(t,) = xo-+eh defined on the interval
[to, t1] that the following condition is valid:

Vo) = x(t)+edx(t)+o(e).
The idea of the proof is contained in [1].
Remark. The sets My, M, in Theorem 1 may be nonconvex. It is sufficient that
there exist approximating cones to the sets Mo, M, at the points x(#,), x(1,), respect-
ively. In this case conditions (B), (C) in the maximum principle have to be replaced

by the conditions that the vectors (fp), —w(f,) are supports to the respective
approximating cones at the points x(fo), x(t;).

4. Convexity of the set of solutions

Naturally the question arises when the maximum principle is not only a necessary
but also a sufficient condition of optimality, It seems very important to know when
the set of solutions Zj,,,(P) of inclusion (1) with the initial condition x(t,) € P
is convex in the space Cy,,,y of all continuous functions on the interval [to, ,].
Denote by Z(7) the intersection of the set Zy,,.,j(P) by the plane ¢ = 7. The set
Z(7) is the set of all points x(7) where x(t), o € ¢ € t,, is any solution of inclusion
(1) with the initial set P, at a moment 7. .

The multivalued function F(#, x) is concave in x on the set M if the condition

aF(t, x)+ BF(t, x') = F(t, ax+ px')

is valid for any points X, x' € M and for any numbers o, f = 0, a-+§ = I,

THEOREM 3. Assume that the initial set P is convex. Then the set of solutions
Zitot(P) is convex iff the multivalued function F(t, x) is concave in x on the sets
Z(7) for any 7 € [ty, t).

The idea of the proof is contained in [2].

.
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5, Sufficient conditions of optimality

In order that the maximum principle should also be a sufficient condition of opti-
mality of the solution x(¢) it is necessary to impose two additional conditions on
the solution x(2).

‘We shall say that the support function ¢ (F(¢, %), ) is concave in x at the point
X, in the direction v, if the condition

ox ,x"xo) Z C(F(Ir x): 1/}D)""C(F(ts xo):%)

is valid for any point x € E".

Note that the concavity of the multivalued function F(Z, x) yields the concavity
of the support function ¢(F(z, x), v) at any point and in any direction.

Let x(¢), fo < ¢ < 1;, be a solution of inclusion (1) and let y(¢) be the correspond-
ing solution of the adjoint system (4). We shall say that the solution x(t) satisfies
the strong transversality condition on the set My with the adjoint function y(t) if the
condition

e(My, —p@®) < (x(0), —9(®)
is valid for any moment 7: fo < f < ;.

THEOREM 4. Assume that My, My are nonempty closed subsets of E", the solution
x(t) of inclusion (1) transfers the set M, to the set M, on the interval [ty, 1] and sat-
isfies the maximum principle on this interval, and y(t) is the corresponding solution
of adjoint system (4). Assume that the support function ¢ (F(t, x), ) is concave in x
at point x(t) in the direction p(t) for any t € [to, 1] and the solution x(t) satisfies the
strong transversality condition on the set M| with adjoint function ().

Then the solution x(t) is optimal.

The proof is contained in [3].

6. Uniqueness of optimal solution

In the case of continuous differentiability of the support function ¢(F(t, x), 9) in v
the maximum condition (A) and the adjoint system (4) may be written as the system
of differential equations

() = ii(ﬂﬁ_’%%lm’
; de(F (1, x(1)), v(2)
) = =

Tnitial conditions for solution (x(f), () of this system may be determined from
conditions (B), (C) of maximum principle and from the inclusions x(t,) € Mo,
x(t,) € M;. The question naturally arises in this case when, for given initial con-
ditions, the unique solution (x(t), w(2)) is determined from the maximum principle.
The following theorem is an answer to this question.
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THEOREM 5. Assume that the support function ¢ (F(t, X), w) is measurable in t and
continuously differentiable in (x, y) except for the points y =0, and the derivatives
ex (F(t, %), v), ¢, (F@, %), p) satisfy the Lipschitz condition in (x, v). Then, for any
given initial conditions, for functions (x(t), w(t)) the optimal solution is unique.

7. Concluding remarks

The Pontryagin maximum principle was proved [8] for control system (3) for the
function f(#, x, ¥) continuously differentiable in x. These systems may be transformed
into the differential inclusion form and the support function is in this case

e(F(t, %), p) = max G, % u), ).

Theorem 1 is applicable when this support function is continuously differentiable
in x. Its not very difficult to show that there exists a function f(¥, X, %) continuously
differentiable in x for which the corresponding support function ¢ (F(t, x), v) does
not have this property and vice versa. That is, the Pontryagin maximum principle
and Theorem 1 intersect over some class of control systems of type (3). It is possible
to formulate as a hypothesis the following theorem, which includes Theorem 1
and the Pontryagin maximum principle,

THEOREM 6. Suppose that the multivalued function F(t, x) for inclusion (1) is
measurable in t and satisfies the Lipschitz condirion in x, and the sets My, M, are convex
and the solution x(1), to < t < t, is optimal. Then there exists such a nontrivial absolutly
continuous function w(t) that the following conditions are valid:

d. [x(@®)
) 77[«/} (t)] & Bcge, n (F (1, x(0), p(2))

almost everywhere on the interval [to, t,];

®) (Mo, p(ta)) = (x(to), p(to));
© oMy, —pt) = (x((t), —9(tD).
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1. Introduction

Consider a control system .
¢y % =f(x,u),

where x € R* and u & U (we do not specify the set U at this point) and a set of ad-
missible controls % which is a subset of the set of mappings u of intervals [0, T(w)],
T@) > 0 into U, having the property that for any u € % the solution ¢(z xo, u) of
the differential equation
% = f(x, u(t))

with @(0, xo, #) = Xo is uniquely defined on [0, T(»)]. We denote by A(%,) the
reachable set of (1) from X,, i.e., (%) = {@(T(W), %o, u)| ue %} and call (1)
locally controllable at x, if xo € intZ(x,).

The well-known theorem of Kalman gives necessary and sufficient conditions
of local controllability at O for the class of linear systems (f(%,u) = Ax-+Bu) with
U being a subset of R™ containing 0 in its interior (the bang-bang controllability
theorem makes the choice of % irrevelant in this case). For nonlinear systems,
sufficient conditions for local controllability at a rest point of the uncontrolled
system are given by the theorem of Lee and Markus ([4]). However, since the theorem
of Lee and Markus uses only the linearization of the system (in both x and u), it
is not difficult to see that its sufficient condition is far from being necessary.

A more recent approach, going back to Hermann ([2], cf. also [5], [6]) relates
the problem of controllability to the study of orbits of families of vector fields.
Given a family of vector fields % = {X*|ieI} on R" the orbit of x, is defined
as 2(xo) = {gho..oghi(xo) p > 0,ijel, ;e R,j =1, ..., p}, where by ¢* we de-
note the flow of X*. Tt is immediately seen that if % is taken as the set of piecewise
constant controls and we associate with (1) the family of vectors fields &
= {X*| u € U} defined by X*(x) = f(x, u), then Z(xg) = 2 (%), were 02+ (x,) is the
positive semiorbit of x,, defined by 2%(x;) = {gif ... o gli(x0)l p =0, ur € U,
42 0,i=1,.,ph
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