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THEOREM 5. Assume that the support function ¢ (F(t, X), w) is measurable in t and
continuously differentiable in (x, y) except for the points y =0, and the derivatives
ex (F(t, %), v), ¢, (F@, %), p) satisfy the Lipschitz condition in (x, v). Then, for any
given initial conditions, for functions (x(t), w(t)) the optimal solution is unique.

7. Concluding remarks

The Pontryagin maximum principle was proved [8] for control system (3) for the
function f(#, x, ¥) continuously differentiable in x. These systems may be transformed
into the differential inclusion form and the support function is in this case

e(F(t, %), p) = max G, % u), ).

Theorem 1 is applicable when this support function is continuously differentiable
in x. Its not very difficult to show that there exists a function f(¥, X, %) continuously
differentiable in x for which the corresponding support function ¢ (F(t, x), v) does
not have this property and vice versa. That is, the Pontryagin maximum principle
and Theorem 1 intersect over some class of control systems of type (3). It is possible
to formulate as a hypothesis the following theorem, which includes Theorem 1
and the Pontryagin maximum principle,

THEOREM 6. Suppose that the multivalued function F(t, x) for inclusion (1) is
measurable in t and satisfies the Lipschitz condirion in x, and the sets My, M, are convex
and the solution x(1), to < t < t, is optimal. Then there exists such a nontrivial absolutly
continuous function w(t) that the following conditions are valid:

d. [x(@®)
) 77[«/} (t)] & Bcge, n (F (1, x(0), p(2))

almost everywhere on the interval [to, t,];

®) (Mo, p(ta)) = (x(to), p(to));
© oMy, —pt) = (x((t), —9(tD).
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LOCAL CONTROLLABILITY OF ODD SYSTEMS

PAVOL BRUNOVSKY

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Czechoslovakia

1. Introduction

Consider a control system .
¢y % =f(x,u),

where x € R* and u & U (we do not specify the set U at this point) and a set of ad-
missible controls % which is a subset of the set of mappings u of intervals [0, T(w)],
T@) > 0 into U, having the property that for any u € % the solution ¢(z xo, u) of
the differential equation
% = f(x, u(t))

with @(0, xo, #) = Xo is uniquely defined on [0, T(»)]. We denote by A(%,) the
reachable set of (1) from X,, i.e., (%) = {@(T(W), %o, u)| ue %} and call (1)
locally controllable at x, if xo € intZ(x,).

The well-known theorem of Kalman gives necessary and sufficient conditions
of local controllability at O for the class of linear systems (f(%,u) = Ax-+Bu) with
U being a subset of R™ containing 0 in its interior (the bang-bang controllability
theorem makes the choice of % irrevelant in this case). For nonlinear systems,
sufficient conditions for local controllability at a rest point of the uncontrolled
system are given by the theorem of Lee and Markus ([4]). However, since the theorem
of Lee and Markus uses only the linearization of the system (in both x and u), it
is not difficult to see that its sufficient condition is far from being necessary.

A more recent approach, going back to Hermann ([2], cf. also [5], [6]) relates
the problem of controllability to the study of orbits of families of vector fields.
Given a family of vector fields % = {X*|ieI} on R" the orbit of x, is defined
as 2(xo) = {gho..oghi(xo) p > 0,ijel, ;e R,j =1, ..., p}, where by ¢* we de-
note the flow of X*. Tt is immediately seen that if % is taken as the set of piecewise
constant controls and we associate with (1) the family of vectors fields &
= {X*| u € U} defined by X*(x) = f(x, u), then Z(xg) = 2 (%), were 02+ (x,) is the
positive semiorbit of x,, defined by 2%(x;) = {gif ... o gli(x0)l p =0, ur € U,
42 0,i=1,.,ph

[39]
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It is not true in general that Q% (x,) = £2(x,). The only simple (but rather

restrictive) condition guaranteeing this is the symmetry condition: for every x and
every i e I there exists a j € I such that X/ = —X" in some neighbourhood: of x (cf.
[5D.

For families of analytic vector fields, the classical theorem of Chow gives
a certain rank condition (cf. Theorem 1 below), which is necessary and sufficient
for x, € int £2(x,) and which, if applied to linear systems, is equivalent to the rank
condition of Kalman (cf. [2],[5]). However, Chow’s theorem does not yield a general-
ization of Kalman’s one since the family of vector fields, associated with a linear
system is not symmetric in general.

The aim of this paper is to prove the equivalence of Chow’s rank condition
to local controllability for systems exhibiting a different kind of symmetry which is
satisfied for linear systems—a theorem which does contain Kalman’s controlla-
bility theorem as its special case.

In §2, we formulate the main theorem in the language of families of vector
fields and three lemmas from which the proof of the theorem easily follows. The
applications of the main theorem to local controllability of control systems are given
in § 3 and § 4 contains the proof of Lemma 3,

2. Main theorem

We shall call a family of vector fields & = {X*| /e I} odd if for every i I there
exists a j € J such that X'(—x) = ~X/(x) for all x. An odd family of vector fields
can always be indexed in such a way that I contains symbols +7/ and —/ in such
away that X~'(x) = —X*(—x) (sometimes X' and X~* may coincide). When dealing
with an odd family of vector fields we shall always assume that it is indexed in this
way.

Further, we shall always assume that all the vector fields under consideration
are complete, i.e., that the domain of existence of their integral curves is R. This
assumption, just as the assumption that the vector fields are defined and satisfy the
oddness assumption over all R} (instead of a neighbourhood of 0) is not essential
and is made only for the sake of simplicity.

With a family &' of C* vector fields we associate the family [#1], which is the
smallest family of vector fields containing %' and closed under the formation of Lie
brackets (cf. [2], [5], [6]). We write 2'(x) = {X(x)| X & Z}.

THEOREM 1, Let % be an odd family of analytic vector fields on R", Then
0 eint Q*(0) if and only Chow's rank condition is satisfied at 0, i.e., dimspan[2](0) = n.

For the proof we need the following three lemmas.

LemMA 1. Let & = {X'|i eI} be a family of C* vector fields on R" satisfying
Chow's rank condition at Xo. Then, for every 8 >0, there exist iy, ...,in €1,

815 -es 8y € [0, 8) such that the map (ty , ..., t,) + @ln o ... o ghs(xo) is a local diffeomor-
phism at (sy, ..., 5,).
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For the proof, cf. [3].

LemMA 2, Let & ={X'|ieI} be a family of C*® vector fields, y e int 2% (x),
z €Q*(y). Then, z € int 2 (x).

Proof. From z = gl o ... o gi(y) it follows that

zegio ... o ghiint 2+ (¥) ‘< int (qa;; 0.0 ¢:;(Q+(x))) < int 2+ (x),

since gt o ... o @ft is a local diffeomorphism.

To make the formulation of Lemma 3 easier, we define for a given family of
analytic vector fields, a stream on V = R" open as an analytic map y: (—6, §)x
xV = R § > 0 (write %(x) = x(¢, x)) such that

1. for every ¢ € (—6, 8), x is a diffeomorphism V' — x,(V),

2. for all x e ¥, xo(x) = x,

3. for every ¢ € [0, §) and all x e ¥, y,(x) € 2+(x).

Note that if y, ¢ are streams on V and 7., v, are analytic functions on
a neighbourhood of 0 such that

@ 7(0) = 7,00) =0 and 7,(f) > 0, 7,() > O for t >0,

then > ¥z, ©¥ryty 1S also a stream on V. If for two streams g, y there exists
astream 7 and analytic functions 7v,, 7, satisfying (2) such that ¢, = 7, ° I
for | ¢| sufficiently small, we shall write y < u. The relation < is obviously transitive.

LEMMA 3. Let & be an odd family of analytic vector fields. Then for every stream
% there exists a stream 9 > y such that $,(0) = 0 for t > 0 sufficiently small.

Proof of Theorem 1. Sufficiency. Write x(x) = @l ..o @i, (x), where
[(s +ors iny 815 ., 8y are chosen as in Lemma 1. Obviously, y is a stream on some
neighbourhood of 0. The Jacobian of , at 0 is an analytic function of ¢ which does
not vanish for ¢ = 1. Therefore, it must be non-zero for ¢ > 0 sufficiently small.
Consequently, x,(0) € int 2+(0) for ¢ > 0 sufficiently small. Let & be as in Lemma 3.
Then there exist analytic functions 7,, 7, satisfyiflg (2) and a streain % such that
Tegetr © Koy (0) = O (which implies 0 € 2+ (3,(0))) for ¢ > 0 sufficiently small. By
Lemma 2, 0 € int 2 (0).

The necessity of Chow’s condition follows from the fact that 2+(0) = £(0)
and that, if Chow’s condition is not satisfied, 2(0) is a submanifold of R" of dimension
< n (cf. [5], [6]).

Let us note that although Theorem 1 is formulated in R", its nature is local,
Thus, we can replace R" by an n-dimensional analytic manifold, provided the oddness
assumption is satisfied in some local chart at 0. This is the situation if e.g. Chow’s
condition is not satisfied and we consider the restriction of & to the orbit £(0),
which is an analytic submanifold of R" of dimension < n (note that £2(0) is symmetric
with respect to 0 if & is odd!); cf. [S], [6]. Thus we have

THEOREM 2. Let & be an odd family of analytic vector fields. Then 0 & int £+ (0)
in the topology of $(0).
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3. Application to control systems

Consider a control system

i
® 5= fole D i), we U= (=1, +1,
fm=
U=UxUyx ... xU, Weassociate with (3) the family of vector fields &' = {f, 41|

P=1,..,p} If we take as % the set of piecewise constant bang-bang controls
(i.e., the set of piecewise constant controls with values 1), then obviously %(x)
= @*(x). Let us also note that since Z'(x) and {fj| { =0, ..., p} (x) span the same
linear subspace, so do [Z](x) and [{/i] i =0, ..., p}] (). Thus we obtain the follow-
ing corollary of Theorem 1:

THEOREM 3. Let fi, i =0, ..., p be analytic, let f, be odd, and let f}, i = 1, ..., p,
be odd or even. Then (3) is locally comtrollable at 0 if and only if rank[{fj| i =
0, ..., pYI(0) is n.

We omit the obvious reformulation of Theorem 2 in the language of control
systems.

Let us note that the conditions of Theorem 3 are satisfied if f, is linear and
Jfi, i =1,..,p, are constant and so Kalman’s controllability theorem is obtained
as a special case of Theorem 3.

The perturbation theory of [1] allows us to extend the controllability result
of Theorem 3 to “allmost odd” control systems:

THEOREM 4. Given a system (3) satisfying the assumptions of Theorem 3 such
that dimspan [{fj| i =0, ..., p}] = n, there exist ¢ > 0 and n > O such that for any
Junction g(x, u) which is Lipschitz continuous in x and continuous in u and satisfies
|g(x, w)| < & for |x| < n the system

P
P =fo(x)+zu:fa(x)+g(x, 1)
"

is locally controllable at 0.

The proof follows from [1], Proposition III-6. One has merely to note that
the homogenity assumption is not essential in this proposition.

4. Proof of Lemma 3

For the sake of brevity we make the following convention: By a stream we shall
always understand a stream on some neighbourhood of the origin, In statements
concerning ¢ we shall drop “for || sufficiently small”.

Let us note that if % is odd, for any stream y the symmetric map %~ defined
by x(x) = —x(—x) is also a stream, For the proof it suffices to note that x(x)

= @i?o ... o pfi(x) implies

20 = —x(=x) = —glo...oplt(—x) = g7 o ... 0 g1 (x) € 2+ (x).
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In the sequel we shall always denote pairs of symmetric streams by the same
letter with superscripts +, —, sometimes dropping +. When dealing with them
simultaneously we shall use the letter 8 to indicate the signs; if multiplied, +, ~ will
be understood to behave like +1, —1.

In order to prove Lemma 3 we prove the following induction statement:

Let yi, i = 1, ..., k, y be streams such that
(4s) 2.:0) = @tP+o(tP* 1Y),y (0) = byt +o(t%H),
where a;, i = 1, ..., k, are linearly independent and b does not belong to any subspace
spanned by k—1 of the vectors a, i = 1, ..., k.

Then cither there exists a stream .1 > ¥x such that Pei.,«0) = 0 or there
exist SHeams Xpe1, Yes1 SUCh that e, > e and yi, i =1, cs k+1, and Wy
satisfy (dr1)-

The assertion of the lemma results from this induction statement as follows:
If 5,(0) = 0, we write 9 = y. Otherwise, (4,) is satisfied for x; = y; = x. Using
the induction statement we construct a sequence of streams y; < 9, < ... (and the
auxiliary streams ¥y, ¥z, --.) until we reach ko such that v,:(0) = 0 and we write
D = 4y, Since (4n4,) is impossible, k, < n+1.

To prove the induction statement we write

o o Pi=1PLes oo P)
Eio = Kumay Where  s(f) = gPuo-PiiPu Pk

Mot = Py Where  r(t) = tPaePe

&,i=1,..,k and n are streams, & > xi, 7 > ¥ and
£.4(0) = @12+ 02+,
N, (0) = b1+ 0(r2+1),

where Q = p, ... pugy. Further we have
[}

&i,e(x) = x+Z agy(x) H +0(12+1),
&) =

Mu,e(X) = x~|—2 Bi(x)ti + 022+,

where ay(x) = O(|x]), B;(x) = O(|x|) for'j =0,..,0~1 and wp(x) = a+O0(x]),
Bo(x) = b+ O(|x]). _

Assume that there exists no stream Y, > ¥y such that yy.q,.(0) = 0. Write
Ti = span {a] i = 1, ..., k} and choose such a complement S; to T, that if 7z,
denotes the projection onto T}, along S, then m(by) does not lie in any subspace
spanned by k— 1 of the vectors a;, i = 1, ..., k. This is possible owing to the assump-
tion that by itself does not belong to any such subspace. We show that there exist
functions 7, ..., %, and signs J,, ..., & such that 7,(0) = 0, 7(0) >0 for ¢t > 0,
i=1,..,k and

(6) T 0 fifrl(t) °...0 fld:'fw,‘(r) ° Wk.t(o) =0,
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Denote Fov = %; R*+1 5 T} by
- 4
Foreot(zy, o, T, 1) = mo £ty o,

By (5) we have

o fg’fn‘ o 7y,¢(0).

k
Foob(gy, o, v, 1) = Z Satf+m b2+ w(vy, ..., T, t),
where o is analytic and satisfies
(7) C()(TI, s Ths t) = O(ITI 'Q+ 'l"]Tk|Q+]tIQ)‘
Write

G (g, O, 1) = FOr(at, L, oty 1),
Then we have

k
G (g, o, 0y, 1) = 102 [Z 6;a‘o-?+n,,(b,,)]+w(crl by ooy Oty £).
¥

By (7) we have &/rtthug(ot, ..., opt, t)[0olt ... dofk8th+1(0) = O as soon
as fy+1 < Q. Thus, by the Weierstrass preparation theorem, w(a, 1, ..., 0kl, t) =
t2+1%(oy, ..., 0y, t), where & is analytic in @y, ..., 0y, t. Therefore,

k |
G (a1, o ) = 123 Bl ) 130, o )]

and
Gl oy, oy, t) =0 i HOv (e, .., 04, 1) =0,

where

k
H (g, .., 00, 1) = Z 810,08 + 7, (b) +1@(0, ..., Ok, £).

Since @y, i =1, ..., k, form a basis of T and m(b,) does not belong to any
subspace spanned by k—1 of the vectors a;, there exists a unique k-tuple of reals
k

1, all of them # 0, such that —m(by) = 12 ay;. We write 6; = signy; and
=

k
choose of = (§;y)"/2. Since H’:' %(a}, ..., of, 0) = l}'%a,y,q—nk(b,,) =0 and

OH w4 [dg (0¥, ..., af, 0) = Q(8, ¥ }a,, ..., 80 ') is nobsingular
(here ¢ = (0y, ..., 04)), there exists a unique k-tuple of analytic functions o(t)
such that ¢,(0) = of and H%%(o,(t), ..., ou(t), t) = 0. Moreover, oy(t) > 0.
If we write 7(t) = toy(t), i =1, ..., k, then 7, will be analytic and will satisfy
w(0) = 0, w(*) > O for ¢ > 0 and F % (v, (1), ..., m(2), t) = 0.
Write
T, () = ERF po.o oty oMyt

Obviously g4 1 > wi; thus yeyq,.(0) # O by assumption. By (6) and the definition
of k41 Mk © Xea1.¢(0) = 0, which implies that the first non-zero coefficient in the
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expansion of ¥4 1,:(0) must be linearly independent of the vectors ¢, i = 1, ..., k.
Therefore, xy, ..., X+t Satisfy (4eyq).

To obtain .y, we choose another complement St to T}, the intersection of
which with the span {a] i = 1, ..., k+1} does not lie in any subspace spanned by
k of the vectors a;, i = 1, ..., k+1. We construct y,,, by the same construction
as x4y With Sy replaced by Sy and 7; replaced by iz, the projection onto Ty along
Sk. Since pry.1,0) # 0, owing to the choice of Sk, xi, i =1, ..., k+1, and .,
will satisfy (4g.. ).
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