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So ¢(¢) is given by (5.1) with

(5.2) a(t) = 5T
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Praha, Czechoslovakia

1. Introduction

In this paper we discuss a problem which arises in connection with N-player, multi-
stage games. In particular, the so-called equilibrium solutions will be studied in
detail.

Multistage games were studied earlier by several authors, e.g. Blaquitre, Leit-
man et al. [1], [10]. Also Propoj in [5], [6] deals with the same type of games. But
in all the works mentioned only the case of two-player, zero-sum, multistage games
is considered. Very little is known about general N-player, nonzero-sum, multistage
games in comparison with the existing results in the theory of differential games,
e.g. see [4], [8], [9].

The following sections are partially on the author's thesis [3]. For the class
of multistage games considered here we obtain necessary conditions for equilibrium
solutions on the so-called open-loop and closed-loop strategy classes, Applying these
conditions we derive the explicit form of the equlhbrmm solutions of linear multi-
stage games with quadratic cost functionals.

2. Problem formulation and notation

In general in an N-player, nonzero-sum, multistage game we have following situation

The aim of player i, I = 1, ..., N, is to choose his control sequence (strategy) b, uj,
vy Uk, satisfying

6h) ub e Uk = (] Qulx, o) = 0; qul(x, ) <0}, k=0,1,..,K-1,

to minimize his cost functional

@) Ji= g(xK)""'th(xk;' o uR) =

k=0

w Thls research was accomplished during the author’s stay at the Stefan Banach International
Mathematical Center.
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subject to the constraints
(3) X4 1 =ﬁ‘(xksul§s"~:uly)’ ]CWO,I,..“,K—I..
Here K is a given positive integer and k = 0, 1, ..., K—1 denotes the stage of the
game. Further
Jo E"xXE™x% ... X E™ — E",
hy: E"x E™x ... x E™ — BN
Oh: E"xE™ - E'k,
gh: Erx Em™ — % i=1,..,N;
g E"— B, i=1..,N.
By the inequality sign for vectors in (1) we mean the following: Let @ & £7; then
a0« g<0,j=1..,p.
We shall consider two different strategy classes defined below.
DEFINITION 1. Any sequence
(W'} = {ub, vk, .., uk_s| ke UL(), k =0,1,..., K~1}
will denote an admissible open-loop strategy of the player /, { = 1, ..., N. An open-
loop strategy N-tuple ({u*}, ..., {#"})is said to be admissible if each {u'},i = 1, ..., N,
is admissible.
DEFINITION 2. Any sequence
{P' @)} = {pb(x), P1 (), ..y Phe-1 ()| Ph(¥) € Uk(x), ke =0, 1, ..., K~1},
where gf: E* - E™ k =0, 1, ..., K—1, denotes an admissible closed-loop strategy

of the ith player, i =1, ..., N. A closed-loop admissible strategy N-tuple is defined
in the same way as in Definition 1.

k=01,.., K~1;

k= 0: 1: "'1]{'—'1!

We are interested in finding the necessary conditions for equilibrium solutions
on both these strategy classes. If (s%, ..., s") denotes symbolically either an open-
loop or a closed-loop strategy N-tuple, the equilibrium solution can be defined as
follows.
‘ DerniTION 3. The admissible strategy N-tuple (s*1, ..., s*) is the equilibrium
solution (equilibrium strategy N-tuple) if, for i = 1, ..., N,
TP om S, ) € J(M, L, M, gl oy,
where s* is any admissible strategy of player .
We have to make some additional assumptions about the problem just stated

in order to obtain reasonable necessary conditions for both open-loop and closed-
loop equilibrium solutions. :

AsSUMPTION 1, All functions appearing in (1)~(3) are continuously differentiable
in all their arguments.
Now write (arguments are dropped for simplicity)
) BC) =h(-), k=01,..,K=2;i=1,..,N,
He-1(*) = hes ()48 (fx-1(-)), i=1,...,N.
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In E™t! consider the sets
Viee, uty ..., w4 uttt, L oY)
= {(a,w)| acE', weE"; a= R, uty o, u), w o= filx, ut, o, u®), o € U},
k=0,1,..,K-1;i=1,..,N.
Further define in E™+! the convex cone
R={rlr=(0,..,0, ¢<0}.

We shall use also the concept of directional convexity, which we introduce
for completeness.

DERNITION 4. Denote by R = EP a-convex cone with vertex at the origin. The
set § < EP is said to be R-directional convex if, for any x;, x, €S and any A,
0 < A < 1, there exists an x(4) € R such that

2xy+(1—=Dx+x(2) e S.

ASSUMPTION 2. For each i = 1,..., N, the sets Vi(+), k =0,1, ..., K—1, are
R-directional convex for any x € E", w e E™, j=1,...,N,j#1i.

For an admissible open-loop strategy N-tuple ({i1*}, ..., {#"}) and the cor-
responding trajectory %o, Xy, ..., &x, let us define as LG, ), i=1,..,N; k
=0,1,..., K—1, the set of indices belonging to the set {1,2, ..., st} and denoting
those components of gf(%x, #it) for which the equality sign holds. The set J(%x, &)
is then called the active set of the ith player, i = 1, ..., N, at the stage k, k =0, 1,
..., K—1. In a similar way we also define the active set in the case of a closed-loop
strategy N-tuple.

As usual, we introduce the Hamiltonian of the player i, i = 1, ..., N, at the
stage k, k =0, 1, ..., K—1, by the formula

Hi (out, o, ™) = —H(xul, o, t) + A fil ut, o i),

where the row-vectors A, € E” will be defined later. To simplify notation in the
next section, we do not explicitly write the dual variable A, among the arguments
of Hi,..

3, Necessary conditions for equilibrium solutions

First we shall consider equilibrium solutions on the class of open-loop strategies.
From Definition 3 we can immediately conclude that, in fact, the ith player, i
=1, ..., N, has to solve only a discrete optimization problem with parameters {w'},
j=1,.., N, j# i, supposing that the other players are using corresponding equi-
librium strategies. So we can apply directly the discrete maximum principle which
was proved in a suitable form in [3]. With some change, the formulation of the
discrete maximum principle used in [2], [7] can be also applied. Thus we obtain
THEOREM 1. Let the multistage game defined in the previous section satisfy
Assumptions 1 and 2. Suppose that the admissible strategy N-tuple ({u**}, ..., {W*'D)
is the equilibrium solution of this game on the class of open-loop strategies. Further
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assume that for {=1,..,N; k=0,1,..., K—1 the vectors (indices I, m denote
components of the vector constraints in (1))

7} a
S QuCt, W) I=1,0rs oy G, ), m € TR, ),
y}

are linearly independent. Here x%, x¥, ..., x§ denotes the equilibrium trajectory.
Then, for each i =1, ..., N, there exist row-vectors

My e B, CheE%, HeB%h k=01, ..,K-1,
such that conditions 1)-3) below are satisﬁed.

d
) ="é;€—}Il£+1(x:" u:‘é, . ,uk_',,)-l L~ M Qk(xk: ui’")"f"«f‘k o qk(x,,, uth),
k=0,1,.., K—1, where we define 2 = 0 and ik = —;—J—C« g,

a a
2) £y : Hiyi(x, uf, ~1u:£)+¢l‘¢“51;‘7gfc(xlt’u;:i)+

0 .
+lhmr A W) =0, k=01, K-
Uy

3) & <0, Ek%(xk,u )-—0 k=0,1,..,K-1.
To formulate analogous conditions for the class of closed-loop strategies we
must take into account the functional dependence given in Definition 2.

THEOREM 2. Consider again the multistage game as in the previous theorem. Let
the admissible closed-loop strategy N-tuple ({p**(¥)}, ..., {@*¥(¥)}) be the equi-
librium solution of this game on the class of closed-loop strategies. Suppose that all
the assumptions of Theorem 1 are satisfied with w}' = g}'(x}), i =1,..,N; k
=0,1,.., K—1, where x¥,x¥, .., x§ denotes again the equilibrium trajectory.
Moreover, let the functions gh(x), k = 0,1, ..., K~1; i =1, ..., N, be continuously
differentiable in, the neighbourhood of this trajectory.

Then, for i =1, ..., N, there exist row-vectors

Mo eEr, eE% HeE% k=01,..,K-1,
such that conditions 1)-3) below are satisfied.

1) 2 = o o (o, pHGR), ep:"(x:‘)) +
UL 0L, ot + 8- =g (et b)) +

ﬁ; Wﬂkm LT 6% RN (PkN(x:))] ['“"" Wk](xn)]

I

k=0,1,.., K—1, where we define 1} = 0 and 2 = -~ g(x,,)
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0
2) 'WHISH(?C:, o xE), ., <P:cN(x:))+

Ut 0Lk, oG+ kG, BEGD) =0,
k=01,..,K-1.

3) B0, Egh(xl, gi'(x)) =0, k=0,1, .., K~1

If we compare the two theorems just stated, we see that as a rule the correspond-
ing equilibrium costs will be different. This difference can roughly be explained in
the following way. From the assumption that the players use closed-loop equilibrium
strategies, i.e,, they always optimize the iemaining part of the process, one can
conclude that certain open-loop strategy N-tuples are a priori excluded from further
considerations.

On the other hand, from the definition of the open-loop equilibrium solution
we see that the ith player (i = 1, ..., N) chooses his open-loop strategy while the
controls of other players are assumed to be fixed. So also in this case some open-
{oop strategy N-tuples are not taken into account. Thus we always optimize on dif-
ferent sets of admissible strategies.

Moreover, from these considerations we also conclude that, in general, neither
open-loop nor closed-loop equilibrium solution are necessarily noninferior (see {8],
[9]), i.e., we can find in both strategy classes in question admissible strategy N-tuples
which quarantee better results for all players than the equilibrium strategies.

The difficulties here considered concerning nonzero-sum multistage games are
also due to the fact that meaning of optimality for general nonzero-sum games is
nonunique. Thus only in the case of a two-player, zero-sum, multistage game the
closed-loop equilibrium strategy of each player can be synthesised as an open-
loop strategy. If K = 1, we have a trivial case in which both equilibria coincide
because of the absence of the closed-loop effect. For a similar discussion of differential
games see [8], [9].

Remark 1. Tt is clear that when computing the initial state x§ we always have
N possibilities-—see conditions L =0, =1,..., N, in both theorems. These condi-
tions must be satisfied simultaneously, because we assumed the existence of the
corresponding equilibrium solution, le., such X, can be found.

Remark 2, Let the initial state x, be given. Both: theorems remain valid with
the following clmnge In condition 1) we always comsider only k& =1, ..., K and
delete relations A5 =0, i = 1, ..., N, because they are now meaningless.

4. Linear multistage games with quadratic costs

Now we apply both theorems of the last section to a special case of multistage games,
namely, to the class of linear multistage games with quadratic cost functionals, For
the sake of notational simplicity we suppose that the system is autonomous, ie., its
parameters do not vary with k. The same technique is apphcab]e to the more general
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cases of these games, considered in [3]. So we shall study the following multistage
game (T here denotes transposition)

A
4 Xpgy = Axk+7>—;B,u’, k=0,1,..,K-1; K, x, given,
K | Kot N
) Jo= 2N 0xers Y S @ Ryud, 1= 1,..,N.
k=0 it f=

The dimensions of all variables are the same as in Section 2, In this way the
dimensions of all matrices are also determined. Without any loss of generality We
can assume that Qy, Ry, 4,/ = 1, ..., N, are symmetric. Moreover, let matrices Qy,
Ry, i =1, ..., N, be positive definite.

1. Open-loop equilibrium solution. Tt is evident that under the assumptions just
stated the all hypotheses of Theorem 1 are satisfied. In fact, we have two equivalent
ways of computing open-loop equilibrium strategies,

(A) Suppose that ({u*'}, ..., {u*¥}) is the desired open-loop equilibrium N-
tuple. As was mentioned in the last section, the ith player solves only the discrete
optimization problem with parameters {#*/}, j =1, ..., N; j # i. From Theorem 1
we obtain for the ith player ‘

() up! = Ri* By [Pk o (Wixa W)+ (ke )"), k=01, ..., K1,

where the symmetric negative definite matrices Pi,, and row-vectors pi.;, k
=0, 1, ..., K—1, are given by the equations

(D Pi= —Qu+A%[(Pl))"*—BiRG' BFI"*4, k=1,..,K-1,
® ko= (W)™ Phyr 4Pk, k=1, .., k-1,
We have used the notation (k¥ =0, L, ..., K—1)

Wi = [1—B,Ri'BYP}."'4,

Pllc = -0y
Pk = 0.

O =B BT [ B B Bk,
el

Let us note that we have directly obtained a synthesis of the equilibrium open-
loop strategies for player i Synthesis has the same meaning here as in the theory of
discrete optimal control.,

Eliminating x; from (6) by successive substitutions according to (4) with values
u, i=1,.,N; k=0,1,..,K~1, and doing the same for each { = 1, ..., N,
i.e., for each player we consider equations (6)-(9), we sce that we have a system of
linear algebraic equations for computing w4, { = 1, ..., N; k = 0,1, ..., K~1.

If we consider (7) and (8) also for k = 0, we can write the equilibrium costs
of the ith player ({ = 1, ..., N) as

(10) Jy = —[5x§Péx, +pb X0+ o,
s
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where
B = o H 30" Pl vt ph vk =2 3 @ Ryt
a1 1at
=3[0 Phyr +Phes] BLRG BF[PE oy wh+ (ke )™, K =0,1, ..., K—1,

gk = 0.
(B) Suppose now that each player uses synthesised open-loop strategy (6).
Then we obtain
12) gt = Ri*BHIL,, Quxy, i=1,..,N; k=0,1,..,K-1,

where, in general, non-symmetric matrices [T}, i =1, ..., N; k = 0,1, ..., K—1
are obtained from the system of coupled discrete matrix Riccati equations

Il = —Qu+QF(ITE )4, i=1,.,N; k=1,..,K—1;

?

13
13 It = -Q;,, i=1,..,N,
where
N
(14) Q= [I—Z;B,R;,‘B}'(II,{H)T]“IA, k=0,1,..,K~1.

In this construction we do not find an analogy of equation (10).

2. Closed-loop equilibrium solution. Again we suppose that this solution exists.
Then we get from Theorem 2 the relations

(15) o¥(x) = R;'B Bl Wix, i=1,.,N;k=0,1,..,K-1,

where the symmetric matrices 15,i+1, i=1 ..,N; k=0,1,...,K—1, represent
again a solution of N coupled discrete matrix Riccati equations

N
Bl = -0+ WE[ Pha =2 Phas By B3 Ry R} B Fus| Wi,
j= ’

(16) i=1,.,N;k=1,..,K-1;
P}Z=~Qtn i=1,"-3N5
where
N "
a7 Wy = [l—ZB,ijB}’P;{HJ"A, k=0,1,..,K-1.
Y 15 S

1f we formally consider equations (16) also for k = 0, we can compute the
equilibrium costs of each player by using the formula

(18) J¥ = —1x8Phxy, i=1,..,N.

In general, it is not possible to find any practical conditions which would
guarantee the existence of a solution of the above-mentioned system of non-homo-
gencous algebraic equations or the existence of all inverses in (14) and (17). So if
the described constructions can be applied, we obtain in thus way the equilibrium
solutions.
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5. Example

We shall consider only a very simple case of a multistage game from the last section
in order to be able to solve it in an explicit form. Also all variables are assumed to
be scalars. Suppose that an initial state X, # 0 and K denoting the number of stages
are given. Finally, let the three-player, multistage game be given by the equations

3

(19) ,\-,H.1=x,,+zu¢, k=0,1,..,K=1,
= |
S

0) Jo=Axk ALY @b 1=1,2,3

Open-loop equilibrium strategies can be computed by using the construction
(B) from the last section, which is more straightforward. Thus we obtain

S S S 3K=k=Dl L
3EK-k—1)+1" T T3E-O+1 P T T3K¥1
i=1,23; k=01,..,K~1.

(21 ﬂl£+1 =

Now we compute the costs of each player from (20) using equation (19)

I K+l o,

@ =g GreiyE ™

f=1,2,3.
Construction (A), i.e., solution of a system of algebraic equations, leads to the same
results, as can easily be verified.

Closed-loop equilibrium strategies are obtained from relations (15)-(18). To
avoid some computational difficulties we assume K = 3. Then we have

~

4 , = . ~ . ~ ) . i
Pa = ._.]_, P2 = _..;., Pi = ._Tg..r, P(l) = _M%%g.., [ = ], Z, 3’
¥ o= 1. 3 e 8. % .
2 = 4 W, R ¥ Wy “%é"
From (15) we obtain
i 9 9
qji, (x) = -_"ﬁ?ﬁ"‘x = """j“"’é“xO’

(23) ) = —ofx = = fxe,  P=1,2,3

] :
Pf'(x) = —ix = —-Fhx,,

Comparing (21) and (23), we see that now the control of each player has a progressive
character. From (18) we get
(24)

Ji= 11052 = 066 1072x3, i=1,2,3,

while for X' = 3 from (22) we have J¥ = 2 10~2x3, { = 1, 2, 3, which is Jess than
in the closed-loop case.
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But also in this nearly trivial multistage game we can find noninferior solutions,
which are strictly superior to (22), (24), e.g. if we take

1
o= e j = : = —
Ui = Y En| Xo, 1=1,2,3; k=0,1,...,K-1,
Then for K = 3 each player has the costs 1,78 - 10~2x3. Therefore, if cooperating,
all players can win.

6. Conclusions

A cerlain class of N-player, nonzero-sum multistage games has been studied from
the point of view of equilibrium solutions. We have obtained necessary conditions
for the equilibrium solutions for open-loop and closed-loop strategy classes. It has
been shown that these equilibria are generally different.

For a special case of linear multistage games with quadratic costs we have been
able to obtain an analytic form of the equilibrium solutions, which are given by
a system of discrete matrix equations of Riccati type. To illustrate the questions dis-
cussed a simple example has been computed.
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