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The idea of using delay feedback in order to solve minimal time problems was
suggested first by V. M. Popov as an application of pointwise degeneracy of delay
systems. :

In this paper, which represents joint work with B. Asner Jr., we shall show
mainly how the minimal time delay feedback can be constructed for discrete systems
and point out analogies and differences with respect to the continuous case,

1. The problem
Consider a discrete-time control system
Xnp1 = AXy+us, A invertible,
Vn = Q¥x,, nz0.

Here we assume A4 to be a dxd matrix (with complex entries) and Q a dx p
matrix. We want to construct a control u, (by using past information concerning
the state) with the property that for all solutions y, vanishes if # > I; moreover,
we want / to be minimal. We assume that in the construction of u, we are allowed
to use only information concerning x; for j < n—(k—1), k > 1. This is the delay
feedback, and we shall look for linear feedback of the form

g
Uy = ZP)xn—(k—-l)—j'
=]

By using such feedback control we get the system

]
Xny1 = Axn'*"z Py (hee1ymeje
=5

It is very easy to see that for such a system we cannot have all outputs vanishing for
n = lif I < k. It is enough to take x; = 0 for i < 0 and see that the corresponding
solution gives x., = A* !x,; hence Q*x;_, = 0 is not .possible for every x,
(4 is invertible). Thus the minimal time is > k.

™ [99]
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2. The construction

We shall now propose a construction that gives Q*x, = 0 for n > k, i.e., a construc-
tion for the minimal-time delay feedback.

Let N be a matrix whose columns define a basis for the subspace defined by
O*x =0.

We shall assume that (4*, N)is completely controllable and define m as the min-
imal integer such that rank (NA*N ... 4™ N) = d. Assume k > 2; the case k =1
is trivial. Choose matrices D;, j = 1, ..., m, such that Q*4'D; = Ofori = 0, ..., k—2;
D; are dx d matrices.

Construct matrices Fy, ..., F,,.; such that

m
NFpyy+ANF,+ .. +A™NF, = AW%Z ARID,
=1

N is dx (d—p), F; are (d—p)xd.
The construction is possible because of our rank assumption. Choose

C, = ~A*+NF,, Cj., = A*C;— 4" D;+NF},,,
B, = —AC;+Dj,

Jj=1..,m=1,

and consider the system
m
Xpyy = AXy+ Z (Bjxn—jk + ijn+ 1 —jk) .
f=

We claim that this system has the property that for all solutions

Q*x, =0 for nx=k.

m
To prove that we consider an arbitrary solution x,, define z, = x,,—ﬁ Ci Xy jks
=1

use the variation of constants formula to compute z,—4*z,_, for n > k, use the
construction of matrices D; to get

m
Q*z,—Q* Az, ; = ZQ*A""D,xn,k-M,

return to x,, use the construction for C; to deduce finally that

O*x, = Q*(Akwle"‘Akcm)xn—k—mks nzk,

and the way in which matrices F; have been constructed gives the conclusion.

It can be seen that we have in the construction many free parameters which
we may use to satisfy some other possible requirements for the control.

Now we would like to know whether the construction we have described is the
only one, This is actually the case if we consider feedback of the formu, = ¥ By, +
+C;Xp41-5 but we cannot say anything concerning other situations.
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3. The continuous case

The corresponding problem in the continuous case is the following. We consider
the control system

X = Ax+u

and we want to construct a feedback depending upon delayed values of the state,
with a delay A, such that an output of the form y = Q*x vanishes for # > #,; more-
over we want f; to be minimal. The simplest construction is the one proposed
by Popov for the case of a scalar output and of a feedback of the form u(t)
= Bx(t—h). In this case the minimal time is 2k and under some independence
conditions the construction of B can actually be performed. The independence condi-
tions may be relaxed if we use controls of the form u(t) = B, x(t—h)+ B, x(t—2h)
but the minimal time is still 24. In our joint work with B. Asner, which | preceded
the construction described above for the discrete case and suggested it, we remarked
that we may realize the minimal time 4 by using a delay feedback containing also
the derivative. More precisely, we may describe a construction for matrices B;, C;
such that all solutions of the system

() = Ax(Q)+ 3 Bx(t—ih)+ Ck(t—ih)

satisfy
O*x(t) =0 for

Let N be as above and assume (e4*, N) to be completely controllable. Choose
m as the smallest integer for which rank (Ne4*N ... e™4*N) = d. Construct matrices
F; such that ‘

t>h.

NEpy 1+ NFp+ ... +e™HNF, = gm+Dah,

Choose matrices D; such that Q*eA*D; =0 and then with G, = —I construct
C; = e*"C;_, +NF; and B; = — AC;+D;. Our rank condition makes the construc-
tion possible and we may prove that the system thus obtained has the desired prop-
erty. For the proof one takes again (compare with the discrete-time solution)
z(f) = x(t)— 3 C;x(t—jh), express z using the variation of the constants formula,
compute z(t)—e4*z(t—h), and use the definition of z to get

m+1

Q*x(t)— Z OX(Cj— e Cy_ ) x(t—jh) = Q* A3 (B;+ AC) x(s—jh)ds;

"_l1 t
J=1 t—Sh
recalling that B;+A4C; = D; and Q*e#D; =0, and taking into account that
0*(Cj—et*Cy_,) = Q*NF; =0 for j =1, ..., m, we deduce that Q*x(t) = 0 for
¢t 2 h, because, with C,,, = 0, the definition of the F; will give Q*e4*C, =0.
A similar computation shows that this structure is necessary for Q*x(f) = 0, ¢ > h.

4. Some comments

It is useful to compare the construction in the continuous case to that in the discrete
case. The discrete case allows more freedom in choosing Dj;; for instance, if (Q*, 4)
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is completely observable, in the continuous case we must take D; = 0. There is also
a difference in the construction for F;. We may also remark that both in the con-
tinuous and in the discrete case we are not obliged to restrict ourselves to the minimal
number m of lag terms if that may be useful for other purposes. We would like to
point out that one of the main disadvantages of the results described is that we
suppose the control to take values in the same space as the state. We do not know
any results for the case where the control space has lower dimension. There is one
result known for the case where the derivatives are not used : namely we cannot realize
our goal with a scalar feedback of the form

m &,

u(t) = Z e x(t—jh).

It is not known if the same is true when we are allowed to use more general delay
feedback of the form

1]

u(r) = § dn(s)x(+s).
h

It is also not known whether the same negative answer is obtained by using
controls of the form u(t) = b*x(t—H) + c*x(t—h).
For the discrete-time case, as pointed out also by Charrier, it is not known

m
whether by using feedback of the form u, = JZ B, x,_j the minimal time / for which
=1

we may have Q*x, = 0, n > , is just 2k. For the same discrete case it is not known
whether degeneracy is impossible if we use only scalar controls.

It is thus seen that there are still many open questions connected with the simple
problem we have considered.
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ON LOCAL CONTROLLABILITY
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Let M™ be an analytic n-dimensional manifold and & = {X*: « € 4} be a collection
of analytic tangent vector fields on M. A continuous map ¢: [0, T]—» M", T' > 0,
is called a solution of @ if there exists a partition 0 = ¢, < #; < ... < # = T such
that on each interval [t;, #1.,), ¢(t) = X™ ((p(t)) for some oy € 4. If M" = R* and
X*(x) =f(x, «), € A = R™, then studying solutions of & is equivalent to studying
solutions of X = f(x, «(¢)) where o is a piecewise constant control.

Let @* be a fixed (reference) solution of & with ¢*(0) = p and let (¢, p, 9)
denote the set of all points attainable at time ¢ by solutions of 2 initiating {from p
at time 0. We define: 2 is locally controllable along ¢* at p if for all ¢ > 0, p*(t)
eint L(t, p, D). Clearly, if @ is locally controllable along ¢* at p then ¢*(r)
eint (¢, p, D) for all t > 0 and cannot be a time optimal trajectory. Since the
Pontriagin maximum principle gives a necessary condition for ¢*(z) to belong to
the boundary of #/(t, p, D), it is of particular interest to study “singular cases™
(i.e., when the maximum principle gives no information; see [2] or [3].) For this
reason, and for ease of exposition, we confine our interest, mainly, to systems of
the form
) D = {X+a¥: -1 < a1}

with X, ¥ analytic vector fields on M?", and reference trajectory denoted T*(-)p,
the solution of % = X{(x), x(0) = p.

Consider the set, (M), of all analytic vector fields on M as a real Lie algebra
with product the Lie product denoted [X, Y]. For ¢ < V(M), let ©(%¥) denote
the smallest subalgebra containing €, let TM, denote the tangent space to M at p
and let €, = {X(p) e TM,: X €%}. We write (ad X, Y) =[X, Y], (ad* X, Y) =
[X, (ad*~1X, Y)]. Now define

P = {¥,(@d X, ¥), @d? X, ¥),...}.

It is known that rank &9 = n is a sufficient condition for 2 to be locally con-
trollable along T* at p. A necessary condition for local controllability of & along T
at p is that #(t, p, @) have nonempty interior for all ¢ > 0. Following [6], we let

[103)


GUEST




