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& INTRODUCTION

The rapid development of software techniques and technologies in the past decade
raises the urgent necessity of creating a theoretical background adequate to fulfil
the following three tasks:

1. Improving our general understanding of software; e.g., answering questions
such as: What should a programming language look like? What are data structures
and how should they be described? What can program complexity mean and how
to measure it? etc.

2. Providing tools for analysis, documentation and designing of software objects
such as programs, operating systems, programming languages, data banks, etc.

3. Improving methods of teaching programming by introducing theories with
well-defined ideas—e.g., of a program, of recursion and jteration, of structuring—
and eliminating teaching by examples as the only method of education in software.

The problem that stimulated the present contribution—and a large number
of others—is connected with (2) above and is usually referred to as proving
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properties of programs. In fact, we try here to construct a mathematical tool for
analysis of programs.

Programs are clearly expressions in more or less formal languages, however,
proving properties of programs is not proving properties of expressions but of
their meaning. What are, therefore, the meanings of programs?

For the majority of authors these meanings are functions, or binary relations,
describing the input-output processing. How these relations are associated with
programs is not a straightforward matter and therefore must be described formally.
The most common method of carrying out such description consists in introducing
a formal language L, whose expressions are interpreted as programs (cf. de Bakker
[1], de Bakker and Meertens [2], de Bakker and de Roever [3], de Bakker and Scott
[4], Cadiou [18], Engelfriet [21], Hitchcock and Park [22], Manna and Vuillemin
[28], Nivat [33], Park [34], Rasiowa [35], Salwicki [37], [38], [39]). The way one
agsociates such expressions with programs is considered obvious and therefore
is not described in the system. The way one associates relations with expressions
is not obvious at all and is usually described by a semantic function

S: L- R,

where R denotes an appropriate set of relations. Proving properties of programs
consists in proving properties of the associated relations. This may be carried out
either within the usual mathematical theories such as set theory, algebra of re-
lations, and the like, orin purpose-oriented formalized theories frequently equipped
with a special logic. In the latter case, L is assumed to be a set of terms in. the theory
and appropriate formulas are considered as theorems about programs.

In the present approach we proceed in a different way. Mathematical models
of programs are assumed to be abstract algorithms, and their meanings to be objects
generated (defined) by these algorithms. The generated objects, however, need
not to be solely relations. According to what we &fant to prove about a program,
we associate with it an algorithm generating objects of appropriate type:

1. the usual binary relations—for the usual input-output analysis,

2. the so-called d-relations—for input-output analysis covering description
of infinitistic behaviour (looping), ’

3. sets of sequences of states (called computations)—to extend the input-output
description to the description of runs,

4. languages—to prove properties of classes of programs with the same"‘lop-
lology” but different interpretations of modules,

5. other objects—for other purposes.

To prove properties of programs in this way, we need a concept of a program-
oriented algorithm and an algebraic tool to describe and analyze algorithmic defin~
ability. The former is fulfilled by abstract Mazurkiewicz algorithms, the latter by

attice-like algebras called quasinets. A few comments concerning these concepts
are given below.
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Let U be a set of objects (e.g. relations, sets of computations or languages)
to be generated (defined) by algorithms of a given class. Every algorithm over U
is assumed to consist of:

1. A finite number of elementary modules (e.g. boxes in flowcharts, elementary
instructions in recursive procedures, etc.), each of them associated with an element
of U. b

2. A control mechanism to define the succession in which the elementary modules.
are to be executed (e.g. flowchart structure, recursive calls, coroutine’ mechanism,,
etc.).

Each algorithm is assumed to generate a resulting object g in U. For example,.
if ay, ..., a4 of Fig. 1.1.1 are partial functions corresponding to elementary instruc-

‘o~ ©
Fig. 1.1.1

a1,a9,83,24,8 € U
\———w———J

elementary Igenemted
objects object

tions, then g is the output function of the program, if ay, ..., a4 are names of instruc-
tions (one-character languages) and control is described by a flowchart, then g
is the corresponding regular language containing all possible Engeler’s signatures.
of the program (see Engeler [20]), if ay, ..., a, are sets of microcomputations,.
then g is the set of global computations of the program, etc.

Proving properties of programs in our case will consist in proving properties.
of objects generated by appropriate algorithms. Starting with known local properties,.
i.e., properties of elements associated with modules (such as 4, ..., @), we shall
prove a given global property, i.e., a property of the element generated by the algor-
ithm (such as g). To provide a mathematical tool for this approach we introduce
special algebras over U called quasinets. Operations in these algebras are power-
ful enough to describe each generated element g by means of the corresponding:
local elements ay, ..., a,. In other words, we are able to describe the algorithmic
definability in algebraic terms. Very briefly each quasinet is a complete lattice over
U with an additional monoidal additive and continuous operation. Completeness
of the lattice provides the infinitistic operations necessary in dealing with iteration
and recursion. The purpose of the finitistic join is to describe branching and that
of monoid operation is to describe sequencing in algorithms.

Warsaw in December 1974
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2. NETS AND QUASINETS

9.1. Abstract quasinets

Let (U, <) be a complete lattice. For any set P = U and any elements ¢ and b
in U we write:
| P—the Lu.b, of P,
() P—the g.L.b. of P,
avub = |_J {a, b}—the join of @ and b,
anb = (M) {a, b}—the meet of a and b.
A set P < U is said to be directed if any finite subset of P has an upper
bound in P.
A function @: U — U is said to be additive if it preserves finite joins, i.e., for
any elements a and b in U

p(aub) = p(a)Ve(d),

and is said to be continuous if it preserves the Lu.b, of directed sets, i.e., for any
directed set P = U

e(UP)=U {p@I peP}.

A function @: U" — U with n > 1 is called additive (resp. continuous) if it is
additive (resp. continuous) for each argument separately.

By a quasinet we shall mean any system N = (U, <, ¢, ¢), where U is a set,
< is a partial ordering in U, o is a binary operation in U called composition, e
is an element in U and the following conditions are satisfied:

1) (U, <) is a complete lattice,

() (U, o, e)is a monoid with unit e,

(3) o is additive and continuous,

(4) for any ain U,

0oa=0,

where 0 = (M) U is the bottom element of the lattice.
By a net we mean any quasinet N = (U, <, o, €) with the additional property:
(5) for any ain U,

aol =0.

In the sequel we omit the symbol “ o ” and write ab instead of a o b. We assume
also that o ” binds more strongly than “U” and “~”, i.e., abuc means (@ o H)uc
and for “n” similarly. A quasinet (net) is said to be sez-theoretic provided Uis a fam-
ily of sets and < is an ordering by inclusion. In this case join and meet are just
union and intersection.
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LemMaA 2.1.1. If @: U — U is continuous and additive in (U, <), then for any
finite (but nonempty) or denumerable set P < U
p(UP)=U {p(| peP}.
In consequence, our composition is left and right distributive over finite and denumer-
able joins.

By the nth power and *-iteration we mean respectively the following oper-
ations in U:

a®=¢,a"'=agq for n=0,1,..,
)
=) a.
n=0

The iteration and the power are assumed to bind more strongly than join and meet.

Interpretation. The set U is supposed to be a set of objects that we associate
with algorithms and their modules. The lattice and the monoid over U are inter-
preted in such a way, that the join corresponds to alternative branching of algor-

Fig. 2.1.1

Fig. 2.1.2

ithms and composition to sequencing of algorithms (Fig. 2.1.1). This interpret-
ation motivates in a natural way the additivity of composition (Fig. 2.1.2). The

]
denumerable join (_) 4, corresponds to a denumerable alternative branching, hence
n=0

loop can be described by *-iteration. Let us now explain conditions (4) and (5). The
bottom element 0 can be interpreted as generated by an “empty algorithm”, i.e.,
an algorithm without runs whatsoever. Suppose now we link sequentially two
algorithms as in Fig. 2.1.1(b). If a = 0, then the compound algorithm generating
ab has no runs at all, and therefore ab = 0. If, however, b = 0, then the set of runs
of the compound algorithm will consist exactly of all infinite runs of the algorithm
generating 4. Since infinite runs may also generate an element in U, we cannot
assume now that ab = 0. On the other hand, we may be willing to develop the


GUEST


172 A. BLIKLE

analysis of algorithms neglecting infinitistic behaviour. In such a case we impose
condition (5) and we deal with nets. For example, the usual binary relations constitute
nets (looping is assumed to have no effect in this case) and d-relations (Section 2.5)
constitute quasinets which are not nets, and therefore permit us to describe the
infinitistic behaviour of algorithms. m

We shall introduce now a generalized composition in N that will play an import-
ant part in our definition of operational semantics of algorithms. Let seq(U) denote
the set of all finite and infinite sequences of elements of U, the empty sequence &
included. By a generalized composition in N we mean any operation C: seq(U) » U
with the following properties:

(D) Cle] = e,
(21.1) 2) Clal = a

(3) Clt,"t,] = C[,]C[t;]  for any finite ¢, and finite or infinite #,, where
t,"t, denotes the usual concatenation.

As can be proved (D. Scott; personal communication), an operation C, as
defined above, exists in any quasinet. On the other hand, there exist quasinets with
mote than one C-operation (e.g., the net of generalized languages). In consequence,
dealing with a quasinet, where a particular generalized composition C is defined,
we have to set it explicitly and consider the extended system N = (U, <, 0, ¢, C).

Given a C-operation in N, we define an infinitary iteration, called also co-itera-
tion, in U. For any a in U:

(2.12)

for any a in U,

a® = Cla,a,..].
As is easy to see (cf. property (3) in (2.1.1)),
2.1.3) aa® = a®.

The concept of an abstract net was originally introduced in Blikle [8]. Particular
concrete quasinets appeared first in Blikle [13] and as abstract concepts in Blikle [14].

2.2. Sequences—general notation

The particular quasinets, considered in Sections 2.3 and 2.4, are algebras of sets
of sequences. To deal with such sets, we introduce the following notation, assumed
to be fixed for the sequel.

Let D be an arbitrary (finite or infinite) set. Finite and infinite sequences over D
are written respectively as (ay, ..., @); » < oo and (a,, 43, ...). We shall also write
(@, .., @,); n < oo to denote a sequence that may be finite or infinite, The empty
sequence is denoted by ¢ and is assumed to be of length 0. We denote by:

seq*(D)—the set of all finite sequences over D,
seq®(D)—the set of all infinite sequences over D,

seq(D) = seq*(D)useq®(D).
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For any set 4 < seq(D), we have
Fin(d) = Anseq*(D),
Inf(4) = Anseq®(D).
Given two sequences X = (dg, ..., ay) and y = (by, ..., b,) with n,m < co,

we say that x is an initial segment of y—in symbols x C y—if n < m and a; = b,
fori=1,..,n.

2.3. Nets of generalized languages

The set D (Section 2.2) will now be called alphabet and sequences over D will be
called words. In the set seq(D) we define a total operation “~” of concatenation:

(1) @, s a) "By, oo b)) = (ay, ..
0 msg oo,

2 (21, a2, ...) " (bys ..

As is easy to see, (seg*(D),”, ) and (seg(D),”, £) are both monoids.

By a generalized language (or shortly just language) over D we mean any subset
of seq(D). We shall write

GLan(D) = {L| L < seq(D)}.

vy Gy By ey by) fOor 0 < m < co and

ybw) = (a5, a5, .. )for 0 < m< o0,

The operation of concatenation for Ly, L, in GLan(D) is defined in a usual way
L 7L, = {x,7x,| x; €Ly & x; € L,}.

It is easy to show now that NGL(D) = (GLan(D), =, , {s})is a set-theoretic
net with 0 = @—the empty set. A generalized language L, with finite words only,
will be said to be finitistic and, with infinite words only, to be inherently infinitistic.
As is easy to check, finitistic languages constitute a subnet of NGL(D).

To define C in NGL(D), we need now an auxiliary operation in seq(D). Let
X4, X, ... be an infinite sequence of words in seg(D). By C[x;, x,, ...] we shall
mean the shortest word in seq(D) with the following property:

Vn = Dx %70 Tx% C Clxy, X2, ).

To define the generalized concatenation in NGL(D), let Ly, L,, ... be an ar-
bitrary infinite sequence of languages and let & denote now the empty sequence
of languages. We set:

(1) Clsl = {e},

C[Ly,...,L] = C[Ly, ... Ly_J "L, for 1<n<owo,

() ClLy, Ly, ..] = {Cl¥y, Xy, .. ] (Vi 2 D0 € L)}

It is easy to see that this operation is a generalized composition, as defined
in Section 2.1.

In NGL(D) we shall identify elements in D with sequences of length 1, and
shall therefore write—in this particular case—D* instead of seq*(D).
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Generalized languages and generalized concatenations of these languages were
introduced and applied to program analysis in Redziejowski [36]. It must be empha-
sized that Redziejowski’s ideas strongly stimulated the introduction of quasinets
with infinitistic composition.

2.4. Quasinets of bundles of computations

Given an algorithm (program, abstract machine, etc.) or a module of it, one can
investigate sequences of its states which are generated whenever the algorithm
or module is run. These sequences, called computations, may be finite or infinite
according to finite or infinite runs of the algorithm (module). The set of all such
computations is a good representation of an algorithm (module) and can be success-
fully used in analysis of algorithms.

Again let D be an arbitrary set which we shall now call the set of states. Se-
quences in seq(D) are called abstract computations or simply computations. The
following operation of composition is defined in seq(D):

M (@y, .- a)o by, ..., b,) =if a, = b, then

@y, e Gny by, o, by) else g,
for0<n<owand0 < m< ©0;

@ (a1,az,..)0 by, .., b)) = (ag, a5, ...) for

In particular, we have

0K m< o0,

cox=¢ for xeseq(D),

xoe=1¢ for xeseq*(D),

(@,8)o (b) = (a,b) = (@) (a, ),

(a,b)o (b,¢)= (a, b, c),

e e e e e e , etc. .
Interpretation. In the majority of cases, elements in D are interpreted as data-

vector states rather than control states. Now, given two algorithms 4, and A4,
linked sequentially as in Fig. 2.4.1 into a compound algorithm A, ; 4, , if (ay, ..., d,)
is a finite computation of 4, and its last (output) element a, is equal to the first

S S S
amay e ay byrby=reerby

.
RN s TN S
;
\
»

g

—

L

’
aj-ray > @by b

Fig. 2.4.1

(input) element of some (finite or infinite) computation (dy, ..., b,) of A,, then
.(al, e Gy bz, ..., by) is a computation of 4;; 4, (case (1)). Similarly, if (a,, a3, ...)
is an infinite computation of 4,, then (4, a,, ...) is also an infinite computation
of Ay; A, (case (2)). m
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It is easy to show that composition of computations is associative in seq(D),
but, in contrast to the case of words (Section 2.3), is not a monoidal operation.-
By a bundle over D we mean any subset B of seq(D), with ¢ € B. We denote:

Bun(D) = {B| B < seq(D) & ¢ € B}.

The assumption that ¢ is an element of any bundle is of technical character and
will be explained below. In the set Bun(D) we define an operation of composition.
For any By, B, in Bun(D):

BioB, = {xoy| xeB &ye&B,}.

Let E = seq'(D)u {e}. It is easy to prove that QNB(D) = (Bun(D), <,°, E)
is a set-theoretic quasinet (but not a mnet), with 0 = {g}. The bundle 0 is called
the empty bundle and for any B in Bun(D), we have

0oB=0,
B o0 = Inf(B)u0.

Equation (2.4.1) asserts that QNB(D) is not a net. This equation is a formal
consequence of the assumption that & is in any bundle. In fact, this assumption
has been made in order that (2.4.1) be-satisfied. An interpretation of this property
has been explained in Section 2.1.

A bundle B is said to be finitistic provided all its computations are finite and
is said to be inkerently infinitistic provided all its computations are infinite. Finitistic
bundles constitute a net which is a subquasinet of QNB(D).

Analogously as in Section 2.3, we now introduce the operation of generalized
composition in seq(D) and Bun(D). Let Xy, x,, ... be a infinite sequence of com-
putations, let By, B,, ... be an infinite sequence of bundles and let ¢ denote both
the empty computation and the empty sequence of bundles.

" Clxy, X3, ...] is the shortest computation in seq(D) with the following properties:

@) If @n)(xy o ... o X, = &), then Clx;, X, ...] = & ’

(i) If (Vn)(xy o ... © Xy # &), then

Vm)(xy o ... 0 X%, & Clxg, X2, .2.])-

Notice that C[x;, Xz, ...] may be empty, finite or infinite. For example:
Cl(a, b), (b, ), (b,¢c),..] =& provided b #c,
C[(a$ b)s (b: ), (C), (C), ] = (a, b, C)’
Cl(a, a), (a, a), ...] = (a, a, ...).

Now, to define the generalized composition in Bun(D), we set
(1) Clel = E,
C[By, ..., B)) = C[By, ..., By_;]e B, for 1<n<oo,

@) CIBy, B, ..] = {Clx1, X2, ...1] (Vi > D(xi€ B)}.

As we have seen, the difference between NGL(D) and QNB(D) arises from the
difference between concatenation and composition. Algebraically this leads to the
fact that there are zero divisors in QNB(D)—i.., there exist B, % 0 and B, # &

(2.4.1)
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with B, o B, = 0—while in NGL(D) this is of course not true. To explain this differ-
.ence for proving properties of programs, let us consider the following example.
Let 4 be an algorithm given by the flowchart of Fig. 2.4.1. Proving this algor-

ithm in NGL(D) requires associating a language with each operation box and
a pair of languages (one for “no” and one for “yes”) with each conditional box.
A standard solution (frequently called the regular expression method, e.g., in Kaplan
[24]) is to tuse one-word languages containing names of appropriate operations
.or conditions. Let thus

A4, = {*x < 07}, Ay = {*x = 0"},

G= {*x:=x+1"}, H= {"x:=4x"}.

What we can prove now about the algorithm is only that its finitistic behaviour
-corresponds to the language

Lrln = (AIG)*AZH:
and its entire behaviour to the language
Loy = (4, G)* 4 HU(4, G).

We can prove nothing here that is a consequence of the interpretation (meaning)
«of the names of boxes, since we cannot make use of these interpretations within
the algebra of languages. For bundles, on the contrary, we can and make use of it.
We set D equal to the set of all integers and for modules:

Ay = {(d)| d < 0}u{s},
4, = {(@| d > 0}u{e},
G = {(d,d+1)| deD}u{s},
H = {(d,4d)| de D}u{e}.
"The finitistic and entire behaviour of the algorithm is described now by the follow-
ing bundles:

fl

By = (4, G)*4, H
By = (A1 YA, HU(4, G)™.
‘These formulas, however, much like the former ones, permit us to prove many
relevant properties of the algorithm. For example, we can prove the following
equalities:
1) (41G)® =0, i.e., there are no infinite runs in the algorithm,
2) Bl“ln = Bent:
3) Bus = {(d,d+1,d+2, ..., ..., ~1,0,0)] d < 0}u{(d, 4d)) d > 0}.
Quasinets of bundles have been originally introduced and applied to proving
‘properties of programs in Blikle [13], [15].

2.5. Quasinets of d-relations

In the majority of approaches to mathematical theories of programs, mathematical
objects representing behaviour of programs are sets of so-called input-output pairs.
"The latter are pairs (a5, @;) of states with the property that there exists a finite
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computation (b;, ..., b,) With @, = b, and a4, = b,. A set of pairs is nothing but
a binary relation, hence binary relations are the usual concepts in carrying out
the input-output analysis.

Dealing with input-output pairs one must neglect, however, the infinitistic
behaviour of algorithms. In other words, one is not able to distinguish between
inputs that are not in the domain of the algorithm because all computations they
generate terminate before reaching the end of the algorithm (blocking), and inputs
that are not in the domain because all computations they generate are infinite
(looping). In many cases this distinction is fairly important, e.g., in the case we are
dealing with the termination problein. We may describe it clearly by means
of bundles but this introduces additional information (computations instead of pairs)
that may not actually be needed. In fact, calculations on bundles are usually more
complicated than these on relations. To deal with relations and be able to describe
infinitistic behaviour at the same time, we add to our relations so-called input-
infinity pairs. What we get in this way are the d-relations described below.

Let D be an arbitrary (finite or infinite) set called, as in the preceding case,
the set of states. Let 6 be an arbitrary object not in D, and let

D; = Du{é},
A= {(a, &) aeDy},
Rely(D) = {RUS| R = seq*(D)& S = 4 & (8, d) € S}.
Blements of Rely(D) are called d-relations over D. Given R in Rely(D) we shall
write aRb instead of (a, b) € R.

Interpretation. If R in Rel;(D) is assumed to descrxbe the behaviour of an algo-
rithim .4,  then for any a, b in D we read:

aRb as there exists a finite run in A that starts with the state-vector (begin, a)

and terminates with (end, b),

aR$ as there exists an infinite run in A that starts with (begin, a).

The assumption that R 6 for any d-relation R has a technical character and
plays the same part here as the assumption that ¢ is in any bundle.

Some authors (e.g., Cadiou [18]) dealing with binary partial relations, intro-
duce a so-called “undefined element” w and set d Rw, whenever d is not in the domain
(left domain) of R. In this way they get total in place of partial relations. It should
be strongly emphasized that this is not the case for d-relations which are partial,
i.e., for any R in Rely(D) its domain {d| (3d, € D;)dRd,} may be a proper subset
of Dy. If d is not in the domain of R, then it should be interpreted as “d involves
blocking”—any run that starts with (begin, d) terminates w1th some (c, d), where . <
is a control state different from end. m

ExampLE 2.5.1. Consider the following program:

begin

while x < 0 do x := x—1;
x 1= x"1
end.

12 Banach t. II
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The d-relation in the set of all reals which corresponds to this program is the
following: R = {(d, d~Y)| d > 0}u{(d, 8)| d < 0}u{(8, 6)}. The real number “0”
is not in the domain of R because for x = 0 our program is blocked before reach-
ing the end.

The operation of composition is defined in Rel;(D) in the usual way: for any
Ry and R,

aR;o Ryb = (Ac)aR c& cRyb .

LetI; = {(d, d)|d € D,}. Itis easy to prove that QNR(D) =
is a set-theoretic quasinet with 0 = {(J, 8)}."

A S-relation R is sajd to be finitistic provided Rn4 = 0 and is said to be in-
herently infinitistic provided R < A. Finitistic d-relations constitute a net, while
QNR(D) is not a net. In fact, for any R in Rel,(D), we have

0-R=0,
- Rol = RnA.
Equation (2.5.1) has an interpretation analogous to that of (2.4.1).
Similarly as for languages and bundles, we can define here a generalized com-

position of é-relations. Let R, Rz, ... be an arbitrary infinite sequence of d-re-
lations.
1) Cle] = L,
CIRy, ..., Ry} = C[Ry, ...; Ryq] o R, fOI' g
(2 CIRy, Ry, .1 = {(a, 9)| (3(‘11, az, -

{Rely(D), =, 0, I}

(2.5.1)

v

n <,
) eseq®(Dy)la; = a &

Vi z D(aRiayy,)]}
Quasinets of 6relat10ns have been originally introduced in Blikle [15], [L6].

3. EQUATIONS IN QUASINETS

Equations in quasinets are the main algebraic tools in our approach. They are
of course the well-known “continuous” equations in complete lattices as used e.g.
in [4], [3], [5], [9), (17}, [22], [41]. There is therefore nothing new in this section;
just a short review to make the paper self-contained and to introduce a uniform
notation.

3.1. Existence of solutions

Let N = (U, <, o, ¢) be an arbitrary quasinet to be fixed for the rest of Section 3.
The most general form of a set of equations in N, with which we shall deal, is the

following:
X3 = (X1, ooy Xy),

(.1.1)

Xp = ‘Pn(xlx ~-~,xn)1

icm
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where ¢;: U"— U for i = 1, ..., n. Clearly, this set of equations can be written
as one “vectorial” equation )
x = O(x), .

where @: U" — U", x = (x4, ..., X,) and D(x) = (pi(x), ..., pa(x)). Notice that U”
constitute a product quasinet with componentwise ordering and componentwise
composition.

Each fixpoint of @ is said to be a solution of (3.1. I) If a is a fixpoint of @ and
for any other fixpoint b of @ we have a < b, resp. a > b, in the product quasinet,

" then a is said to be the least solution (least fixpoint), resp. the greatest solution

(greatest fixpoint), of (3.1.1) (of D).

Fixpoints (in particular the least and the greatest) need not always exist. Below
we quote some well-known theorems concerning this problem.

A function @: U" — U™ is said to be monotone if for any a and b in U"

a<b implies P(a) < D).
Clearly, if
D(x) = (pi(x), ..., pm(x)) Wwith @ U"> U fori<m

then @ is monotone (continuous) iff all ¢; are monotone (continuous). Moreover,
each continuous function is monotone but not conversely.

THEOREM 3.1.1 (Tarski [42]). If @: U™ - U" is monotone, then the least ﬁxpomt
and the greatest fixpoint of @ exist.

TreOREM 3.1.2 (Kleene [25]). If @: U” — U" is continuous, then the least fix-

point of D exists and is equal to
o0
U 20,
i=1

where @H(x) = B(... D(x) ...) i-times and 0 = (0, ..., 0) e U™,

3.2. Elimination of variables

Consider the set of equations (3.1.1) and suppose we want to solve it. Can we elim-
inate the unknown x; by solving x; = ¢,(x, ..., X,) with respect to x, and then sub-
stituting this solution for all appearances of x, in the remaining equations? Can
we repeat this operation for all x; and solve the set in thls way? Formal answers
to these questions are given below.

Let @(x, y) be an arbitrary function of n+m arguments, where x = (x,, ..., x,)
ranges over U”, y = (Vy, ..., ¥m) ranges over U™ and & ranges over U", i.e., @:
Urtm — U, Of course, (x,y) is used to abbreviate (Xi, ..., Xu, Y1y cv» Vi)

If there exists a function I: U™ — U" such that for any a in U™; I'(a) is the
least fixedpoint of P(x, a), then I' will be called the resolvent of ® with respect
to x and will be written

I'G) = (ux)d(x, y).
Clearly, I'(y)—if it exists—can be said to be the least solution of the following
parametric equation:
x=D(x,p).

12*
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Moreover, if m = 0 and (ux)D(x) exists, then it is the least fixedpoint of @. The
following theorem is also well-known: ,

TuEOREM 3.2.1. For every continuous function ®(x,y), where x and P range
over the same U", the resolvent (ux)®(x,y) exists and is again a continuous func-
tion.

Two sets of equations are said to be equivalent provided their sets of solutions
are equal and are said to “be Is-equivalent provided their least solutions exist and
are equal.

THEOREM 3.2.2 (Beki¢ [5], Leszezytowski [26]). Consider a set of equations
of the form
x = O(x,y),

y = T(x! »,
where @: Un+m o U, W: Urm — U™, x ranges over U and y over U™, If & and ¥

are continuous and I'(y) = (ux)D(x,y), then the above set is Is-equivalent to the
Jollowing:

@3.2.1)

x = F(y)’
y=Y((),y).

THEOREM 3.2.3. Let D and ¥ be defined as above. The set (3.2.1) is equivalent
to the following:

X = Q(xy ‘I’(x,y)),
y = ¥(x,).

The above theorems permit us to eliminate variables in sets of equations (in
particular to solve equations in this way), provided we know how to compute the
resolvents of the appropriate functions. The following lemma gives resolvents for
functions that appear frequently in the sequel.

Lemma 3.2.1. For any a and b in U

1) (ux)(axvbd) = a*b,

(2) (ux)(xawb) = ba*,

(3) (ux)(axbuc) =

Clearly, @, b and ¢ can be replaced by arbitrary functions that are constant
with respect to x. The proof consists in a direct application of the Kleene approxi-
mation theorem (Theorem 3.1.2).

EXAMPLE 3.2.1. We shall solve a set of equations by elimination of variables.
Consider the set

0
U a"ch.
i=0

x = axuby, »

¥y = xVayuc.
1t is Is-equivalent to

x = a*by,

y = (a*bud)yuec,
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and the latter to
x = a*b(a*bua)*c,
y = (@*bua)*c,

hence, this is the least solution of the set. m

4. MAZURKIEWICZ ALGORITHMS IN ABSTRACT QUASINETS

Mazurkiewicz PD-algorithms are adequate mathematical models for a large class
of programs including iterative programs and recursive procedures without par-
ameters. Given a program to be analyzed, we fix an appropriate abstract algorithm,
according to the control structure of the program, and a quasinet to be dealt with,
depending on what we want to prove about the program. Below we define Mazur-
kiewicz algorithms in the general case of abstract quasinets.

4.1. The definition

Let N= (U, <,e,e,C) be an arbitrary quasinet with generalized composition
to be fixed for the rest of Section 4.
By a pushdown algorithm (abbr. PD-algorithm) over N we mean any system

A= (V,a,¢,P),

where V' = {a;, ..., ®,} is an arbitrary finite set of characters called labels; a; € V'
and o, is called the initial label; ¢ is the empty string (of labels); P is a finite set
of triples of the form (ay, @, 2), where a € U, o; € V, z € V'*, such that for any ;€ V

there exists (¢, @, z) in P with o; =

Each triple (o;, @, 2) in Pis called an instruction and can be interpreted as a pro-
cedure declaration, where «; is the procedure name, a is a “segment” of procedure
body, free of other procedure calls—we call it the action of the instruction—and z
is a string of procedure names to be called (activated) in succession as they appear
in z. If z ='¢, then z is interpreted as the end symbol.

ExampLE 4.1.1. Consider the following recursive procedure:

procedure FACTORIAL;

begin
if n =0 then 5:=1
else begin
ni=n—1;
FACTORIAL;
n:i=n+l;
Si=8§Xn;
end;
end .
The corresponding PD-algorithm is the following: S

V= {“1: 0‘2}:
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P consists of the three instructions,
(g, [if n =0 then s := 1], ¢),

(oty, [if n 5 0 then n :=n—1], o, a,),
(g, [n:=n+1; s :=sxn], &).

The actions of these instructions may now be interpreted, depending on what
we want to prove about the procedure, either as one character languages (cf. example
of a program in Section 2.4), or as d-relations in the set Re X Re (Re—the set of reals)
or as appropriate bundles of computations, e.g., [ifn # O thenn? = n—1] = {([n, ],
[n—1,sD| n  0&n, s eRe}.

It is to be explained that, in contrast to other authors (e.g., de Bakker [1]),
we do not follow the ALGOL style, where a distinction is made between a set of
procedure declarations (references) and a program containing their calls. In this
approach, procedures are nothing but programs or, their modules. It is clear that
this assumption has only a technical character and does not restrict the generality
of our investigations.

4.2, Operational semantics

As mentioned in the Introduction, each algorithm defines a resulting element in U
(e.g., a relation, a bundle or a language), to be called outcome in the sequel. How
outcomes are defined, clearly depends on the way we suppose our algorithm to be
executed. This will be described below.

Consider an arbitrary PD-algorithm 4 = (V, ay, &, P) over N. Strings in V
will be called control states of the algorithm. Given an instruction (x;, a, z), the
pair (o4, z) describes a binary relation in V, called the control relation of the instruc-
tion. We denote this relation, which in fact is a function, by (¢ — 2) and, for any
Y1, Y2 in V*, we define:

Y1l = 2)y, = Aw e PH)[y, = oyw &y, = zw].
In this way each instruction can modify the actual control state, provided it is applic-
able to that state.

Consider now an arbitrary label o, and a finite or infinite sequence of instruc-
tions i

(“ils ay, 21), sevy (‘xlm’ s zm);

such that there exists a sequence of control states

msw’

Y15 ooy Vit
with the following properties:

D) yi=ow =0 and (Vj < m)[y;(ey, > 2) Y1)
(2 If m < o, then ypi, = &.

Each such a sequence of instructions will be called an wrun of the algorithm.
The corresponding sequence of actions

(al’ seey am)

icm
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is called an aj-trace of the algorithm. Elements of this sequence are actions that
can be considered as consecutive in the algorithm. Therefore, the outcome generated
by this trace is -

Clay, ..., ay]
(cf. the interpretation of composition given in Section 2.1). Given a label «;, we

now have more than one a,-trace in 4. The set of all a;-traces (finite and infinite)
will be denoted by '

Tr(ow).
Each of these traces produces its own outcome, therefore, the outcome of the whole
set will be the join
‘ U {C@)| teTr(e)}, ‘
since any two traces can be considered as independent executions of the algorithm.

For each «; € V' we now define:

Run(a;) = U {C®)| te Tr(a,)}—di-run element,

Tail(a;) = | {C@)| t € FinTr(o;)}—oy-tail element,

Perp(a;) = | {C@)| t € InfTr(a))}—a-perpetual element,
where Fin and Inf operators are defined as in Section 2.2. We have, of course, for
any o;in V: :
Run(e) = Tail(e;)Perp(e).

Inthe sequél, by Run, Tail, Perp, Tr, FinTr and Inf Tr, we shall mean respectively
the vectors (Run(a), ..., Run(s,)), (Tail(s), ..., Tail(4,)), etc. In analyzing
algorithms we shall be especially interested in the following outcomes:

Run(a,)—the entire outcome of the algorithm,

Tail(o;)—the finitistic outcome of the algorithm,

Perp(a;)—the infinitistic outcome of the algorithm.

ExampLE 4.2.1. Consider an abstract PD-algorithm with the same control
structure as the algorithm in Example 4.1.1:

P = {(a!!a= 8); (0(1, b: M1“2); (ah c, E)}

The following are examples of oy-runs with explicitly written intermediate control
states:
ay(ay, a, 8)°, )
o (0, b, g o) oty 0a(ety, a, E)0a (e, €, £)°,
oy oy, by oy o) oty atp(aty, by oy otp) 0y ota ety (0t , by oy da)aly 0 0 0ty
Therefore, examples of o« -traces are the following:

@, (,a,0), (b,b,a,¢c,0), ..
(b,b,b,..))

—finite traces,
—infinite trace.
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As can now be proved,

Tr(e) = (OP ™ (@) (@Pol®)=,
@21 Run(ay) = Cjobjac"ubw, .

0
Tail(o;) = | b"ac”,
n=0

Perp(ay) = b.

Notice that the operations appearing in the formula describing Tr(x,) are
operations in NGL({a, b, c}), hence, traces can be considered as generalized words.
Operations in the remaining formulas are of course operations in the quasmet N,
over which the algorithm is defined. !

Suppose now that we want our algorithm to be a model of the recursive pro-
cedure described in Example 4.1.1, To this effect, we first have to specify the quasmct
N and then we have to specify @, b and ¢ in this quasinet.

First, let N = NGL({4, B, C}), where 4, B and C are one-character names
of the following modules:

A is the name of “if n = 0 then s :
B is the name of “if n 5% 0 then n :

1”,
n— 1”’
@

C is the name of “n = n+1;s5:= sxn”,

i

.

whatever the meanings of these modules can be. Now we set a = {4}, b = {B}
and ¢ = {C} and, from (4.2.1), we can conclude the following:

.(1) Each finite run of the program (if any) consists in performing the module B
a finite number of times, then the module 4, and then the module C the same number
of times as for B.

(2) There is at most one infinite run of the algorithm, which consists in repeat-
ing the module B an infinite number of times.

Let now IV = QNR(Re x Re), where Re is the set of all real numbers We set
a, b and ¢ to be the following d-relations in Rely(Re x Re):

a = {([0,5], [0, 1D] s eRe}u {(3, )},
b= {(In,s], ln~1,5])| n,s eRe &n # 0}u{(3, 6)},
¢ = {([n, 5], [n+1, sx (r+ DI 7,5 € Re}U{(3, &)}

In this case we can prove much more about the algorithm on the basis of (4.2.1)
(detailed calculations are given in Example 6.4.1):

() Tail(o)) = {([n, 6], [n,n!])| neNat & s eRe}u{(4, )}, where Nat is the
set of all natural numbers. In other words, given natural n and arbitrary s our algor-
ithm runs a finite amount of time and preserves the value of n, while the value of
s becomes n!.
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@) Perp(ay) = {([n, 5], 6)| n e Re—Nat & s e Re} U {(d, 8)}, i.e., if the initial
value of 7 is not a natural number, then—independently of the value of s—our
algorithm does not terminate its run.

Suppose now we are not satisfied with the input-output description of the
algorithm, but we want to know what is happening during each run. In such a case
we set N = QNB(Rex Re) and we assume a, b and ¢ to be the following bundles
of computations:

a= {([0, s], [0, I])| s e Re}u{e},
b= {([n,s], [n—1,sD| n,seRe &n # Q}ue},
c={([n, s], b+1,sx @+ D) n, s & Reju{e}.

It is to be emphasized here that, while the choice of interpretations for a, b, ¢
was rather obvious in the case of relations, it is not at all obvious in the case of’
bundles. We have in fact assumed that all the bundles consist entirely of compu-
tations of length 2. This is nothing but an arbitrary choice depending on the way
we want our procedure to be analyzed. In fact, we could assume c to be follow-
ing:

¢ ={(In, s, n+1, 5], n+1,sx (a+ D)) n, s € Reju {e},

or even longer, e.g., if we wanted to take into account that multiplication is per-
formed by successive addition.

Returning now to our former interpretations of a, b and ¢, (4.2.1) permits.
us to show the following:

(5) Tail(ey) = {([n, 51, [n—1, ], ..., [1, ], [0, 51, [0, 1], [1,1], [2, 2],

[3,6], ..., [n,n!])] neNat &seRe}u{s}.

From this formula, besides the input-output characterization, we can draw

a number of detailed conclusions. For example:
(i) the value of n never exceeds its initial value,
(ii) the value of s never exceeds the maximum of its initial value and nl,
(iii) the number of steps to compute n! is 2n+ 1, etc.

(6) Perp(ay) = {(In, s, [n—1,5], [n—2, 5], ..)| ne Re—Nat &s e Re}u{e}.

Analyzing this formula, we can see that in each infinite run the absolute value
of n increases indefinitely, and hence an overflow will be signalized.’

Concluding our example, we can formulate some general observations of
methodological character:

(1) Every assertion we prove about a program (algorithm) within NGL(D)
can be also proved within quasinets of relations or bundles, but not conversely.
Any theorem formulated in terms of languages is a kind of tautology—it is true
for any program with the same control structure as the one under consideration..

(2) Every assertion we prove about a program within QNR(D) can be derived
from theorems proved about the program within quasinets of bundles of compu-
tations. The converse is not true.
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(3) The above observations remain true for proving relationships between
programs such as equivalence, inclusion, etc.

Mazurkiewicz algorithms and the concept of Tail(x;) were introduced orig-
inally over nets of usual binary relations by Mazurkiewicz ([29], [30], [31], [32]).
Tail(x;) was defined in an equivalent but different way. The first extension of these
ideas to other quasinets was given in Blikle [13] for the case of bundles, the first
generalization to the abstract case in Blikle [14].

4.3. Fixedpoint semantics

Proving properties of algorithms (programs) consists usually in proving properties
of three corresponding vectors: Run, Tail, and Perp. In consequence, any analysis
of an algorithm must start with finding these vectors explicitely, i.e., with obtaining
formulas describing them. This may turn out to be quite difficult, however, if we shall
take the operational semantics as our starting point. For example, in order to find
Tail(cty), we have to specify FinTr(a,), which requires the examination of all finite
-executions of the algorithm. There is no need to explain that an examination of exe-
cutions is actually what we want to avoid in a mathematical analysis of programs.

In this, and the next two sections, we show how.Run, Tail and Perp can be
described in a nonoperational way, i.e., without refering to Tr, FinTr and InfTr.

We prove namely, that the vectors Run and Tail are solutions of the so-called ca-

nonical set of equations, which can be effectively specified for each given PD-algo-
rithm. Also for Perp we obtain a nonoperational description, however, not always
in fixedpoint terms.

Let A = (V,a;,¢, P) be an arbitrary PD-algorithm with ¥ = {cy, ooy tu )
Without loss of generality (i.e., without changing Run, Tail and Perp vectors), we
can assume that for any o in ¥ and z in ¥* there is at most one a with («, a, z)
in P. Indeed, if there are two instructions (w, a,z) and (u;, b, z) with the same
control relation, then we can replace them by («;, aub, 2). For every o, and z appear-
ing in an instruction, the only corresponding action will be denoted by a;,. For
every i € n we shall set .

_ Vi = {z| @a)(w, a,z) e P}.

With any zin V* we now associate a total function ¢,: U" ~ U (nis the number
of elements in V) defined as follows:

M If z =&, then @, (x;,..., %) =e.

@ If z = a ... ay,, then @ (xq, ..., x,) = Xy wee Xy

For instance, if z = a &z 04, then @, (xy, ..., %) = X, X, %;.

By the canonical set of equations (abbr. CSE) of the algorithm A, we shall
mean the set

X = U au%(xu ey X,

. zeVy
@3y T
Xp = U anz(Pz(xu ceey x,,).

zeVy
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For example, in the case of the algorithm in Example 4.2.1 the CSE is the
following:

x; = bx x,va,
4.3.2)
X, = C.

A PD-algorithm 4 = (V, a,, ¢, P) is said to be admissible if either @;,0 = 0
for all a;, € V; and i < n, or FinTr(a) # & for i < n.

TueoreM 4.3.1. For every admissible PD-algorithm the vector (Tail(ozl),
«o, Tail(a,)) is the least solution of CSE.

The proof is given in Section 4.4. It should be emphasized that the assumption
about admissibility of the algorithm cannot be omitted in this theorem. A counter-
example has been given by H. Miiller (personal communication).

On the strength of this theorem, we can get Tail(a;) by solving the appro-
priate CSE, e.g., considering the CSE (4.3.2), we can solve it in the following way:

Xy = bxyx,va,

X, =c,
therefore, .
x,; = bx cua,
Xz = C,

hence (by Lemma 3.2.1),
0
xy = | b"ac”,
n=0

X, = C.

0
We get, therefore, Tail(a;) = |_J b'ac® and Tail(x,) = ¢ (cf. Example 4.2.1).
n=0

To get a fixed point characterization of the Run vector, we now introduce an
auxiliary notion. A sequence f & seq(U) is said to be proper (with respect to the
given C operation) if it is either finite or, whenever it is infinite, it has the following
property: for any a in U

Ct)oa=C().
The following facts about proper sequences can be easily observed:

(1) Each finite sequence is proper.

(2) Bach sequence t with C(t) = 0 is proper.

(3) Bach sequence in QNR(D) is proper (since for any infinite 7, C(t) < 4).

(4) Each infinite sequence ¢ = (Ly, Ly, ...) of languages with an infinite number
of e-free L;’s (¢ ¢ L;) is proper (since in this case

C(r) < seq™(D)).

(5) Each infinite sequence ¢ = (By, B,, ...} of bundles with an infinite number

of By’s, where each nonempty computation is of length at least 2, is proper (since

in this case
C(t) = seq®(D)u0).


GUEST


188 A. BLIKLE

(6) For any two sequences ¢, and #, in seq(U), if ¢, is proper, then
C(t,"1;) = C(ty) » C(tz).

A PD-algorithm is called proper whenever all its o-traces for i < n are proper
sequences. This notion seems to be fairly natural. In fact, any algorithm over QNR(D)
is proper. Moreover, if we consider an algorithm over QNB(D) and we assuine it
to be adequate mathematical model of a real program, then the only actions (bund-
les) with computations of length 1 can be actions corresponding to such tests which
have negligible time consumption. Since in practice we usually have no loops con-~
sisting of tests only, each trace of such an algorithm satisfies the property required
in (5) and, therefore, the algorithm is proper. In a similar way, we can motivate thls
notion in NGL(D).

ToeoREM 4.3.2. For any proper PD-algorithm the vector (Run(ws), ...,
is a solution of CSE.

The proof is in Section 4.4. It should be stressed that the assumption about
properness cannot be omitted in the theorem. In fact, if we consider the algorithm
from Example 4.2.1, where a = {4}, b = {B, ¢}, ¢ = {C}, are languages over

d
D-= {4, B, C} with B # C, then the vector ({_)b"ac"ub®, ¢) is not a solution
=0

Run(s,))

of the corresponding CSE.

In the general case, (Run(ay), ..., Run(e,)) is neither the least nor the greatest
solution of CSE. In consequence, there is no unambiguous fixedpoint description
of the Run vector in the abtsract case. As we shall see however, there are such descrip-
tions in each of the cases NGL(D), QNR(D) and QNB(D).

The idea of a fixedpoint approach to programs is not new and has been de-
veloped by a number of authors. Some main references are: de Bakker and Scott
[4], Beki¢ [5], Park [34], Scott [40], Scott and Strachay [41], de Bakker [1], Mazur-
kiewicz [29], de Bakker and Meertens [2], de Bakker and de Roever [3], Blikle and
Mazurkiewicz [17], Cadiou [18], Manna and Vuillemin [28], Nivat [33], Hitchcock
and Park [22]. All these papers deal with finitistic behaviour (least fixedpoints).
The present approach extends the usual input-output analysis of programs to an
input-output and input-looping analysis (J-relations) and to an analysis of program
executions (bundles). It also was the author’s intent, not to develop here any formal-
ized theory, but to suggest an algebraic tool applicable within usual mathematics
in analyzing programs. An earlier exposition of the author’s fixedpoint approach
to programs was given in Blikle [10]-[16] and Blikle and Mazurkiewicz [17].

4.4. Proofs of the fixedpoint theorems
This section contains proofs of Theorems 4.3.1 and 4.3.2, together with some auxm—

ary notions and results.
Let N = (U, <,°, e, C) be an arbitrary quasinet with a specified operittion

C: seq(U) » U.

icm
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We introduce now another operation
C: GLan(U) » U,

defined for any S < seq(U), as follows:

c(s) = U {CW)| reS}.

This operation associates sets of sequences (traces) in U with elements of U.

In fact, for any algorithm 4 and any label o; in this algorithm, we have
Run(a)) = C(Tr(oy)),
Tail(o) = C(FinTr(x)),
Perp(a)) = C(InfTr()).
LemMA 4.4.1. For any family {S,| p € P} with S, < seq(U) we have

ey (S,)= U C(Sy)-

Easy proof is left to the reader. A set S < seq(U)is said to be proper if all its
elements are proper sequences (see Section 4.3). The empty set is therefore a proper set.
For two sets Sy, S, & seq(U) let §;7°S, denotes their concatenation within NGL(U),
as defined in Section 2.3.

“LeMMA 4.4.2. For any finite or denumerable sets Sy, S, < seq(U), if Sy is proper,
then

(44.1)

C(Slﬁsz) = C(S1)C(S2),
unless Sy # B = S, and C(S)0 # 0.
. Proof is obvious and consists in application of Lemma 2.1.1 and property (6)
of proper sequences (Section 4.3).

Now let A = (V, oy, &, P) be an admissible algorithm over NV and let V =
{1, ..., %, }. By analogy to a-traces, we can define x-traces for arbitrary x e P*.
Tr(x) will denote the set of all x-traces. We shall assume Tr(e) = {¢}.

Lemma 4.4.3. For any x in V¥—{e}, if x = oy, ...

M Trex) = Tr(e)™ ... " Tr(o),

@  FinTr(x) = FinTr(w)" ... " FinTr(w,),

@) InfTr(x) = Tr(ow)” ... T Tr(o,_ )" InfTr(e).

Proof. The proofs of (1), (2) and (3) are, of course, analogous. To prove (1),
we show that

o, » then

Tr@x) = Tr() " Tr(x")
for any x = a”x' with a €V and x' € V*. Consider arbitrary ¢ in Tr(x) and let
P15 - Ym With m < o be a corresponding sequence of control states (Section
4.2). If there exists k < m with y, = x', then’some initial segment of ¢ is in Tr(«)
and the remainder must be in Tr(x). If there is no k with this property, then ¢ is
an infinite trace in 7r(a), and therefore, t € Tr(w)™ Tr(x"). In consequence, Tr(x)
< Tr(e)” Tr(x").

Let t e Tr(@)"Tr(x") with ¢t = t,"t,, t, € Tr(e), t, € Tr(x). If ¢, is infinite,
then of course ¢ = #; € Tr(x). If ¢, is finite, then let »;, ..., yx and zy, ..., z, be
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sequences of control states corresponding to #; and t,, respectively. It is easy to show
that ¢, ¢, is an x-trace with the sequence of control states y, "z, ..., 3, "z,
Zyy iy Zy. H

LemMA 4.4.4. For any i < n

O Tr(w = XLE_J' {(@)} " Tr(x),
@)  FinTr(w) = L_; {(ai)} " FinTr(x),
@ InfTr(w) = 'erL:‘{&} {(ﬂ:x)}"‘fnf Tr(x)-

Proof is obvious by the definition of Tr(e;) and Tr(x).

" Proofs of Theorems 4.3.1 and 4.3.2, Applying equations (4.4.1) and the above
lemmas, we easily show that the Tail and the Run vectors are solutions of CSE.
We shall show now that the former is the least solution of CSE.

Let (dy, ..., d,) be an arbitrary solution of CSE and for any x in ¥* and any
m 2 1let Tr™(x) denote the set of all x-traces of length not greater than m. Clearly,

0
FinTr(x) = | Trm(x)
me=]
for any x in ¥*. Let 1 = C (Tr™(x)). By Lemma 4.4.1, we get therefore
o0
. Tail(a) = (1
mes]

for i =1, ..., n. We shall show that for i< n and m > 1, #' < d;. The proof is
by induction on m. .

Initial step: t} = a;, < U{ }ai, edy, ..., d)oa, = d,.

zeV~{8
Induction step: Let tf < d; for k <m and i = 1,...,n Of course, for any
i<n

= C(Tr+i(ay)) = C(,EJ {@)} " 1r(2)) = L; a, C(Tr"(2)).

It is also clear that for any z = &gz ... Qige,s In V¥, where I(z) is the length
of z,

Tr’"(z) = Tr"‘(ccl(lm)ﬁ "TV'”(oq(,(,),,)).

Therefore, by monotonicity of composition and by the inductive assumption, we
get

= J ¢,C(Tr"(z))
zeV; B
c g‘auc (Tr"’(ai(,,,))" e '“Tr’"(a;(,(,), ,)))
=) NN R )]
2€Vy

= Uaiz(pz(dl, caey dn) = dg. [ ]
zeVy
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4.5. Finite-control algorithms

Finite-control algorithms constitute a particular case of PD-algorithms and are
models of programs without recursion (flowchart programs). Their theory is simpler
and better developed and therefore it is worth to be described with more details.
Let A = (V,ay, ¢, P) be a PD-algorithm with ¥ = {a,, ..., &,}. This algor-
ithm is said to be a finite-control algorithm (abbr. FC-algorithm), provided each
instruction is either of the form (ay, a, a;) or of the form (a;, @, &) with «;, ;€ V.
Instructions of this form have a very natural ALGOL-like interpretation:

(o4, @, 0) as
(z, a, &) as

“oy: do a; go to o;”,
“ap: do a end”.

Denote o, = &. We shall make the assumption, as we did in Section 4.3,
that for each oy, o; with i < n, j < n+1 there is at most one a with (a;, a, ¢;) € P.
We shall denote this a by a;; and we shall set a;; = 0 whenever there is no a with
(o, a, o) € P.

The CSE can be written now as follows:

X1 = Q11X VY e V81 XY 815
“4.5.1)
Xy = Gup Xy eee Ulpy XUl 1 -

Whenever (Tdil(a), ..., Tail(z,)) is the least solution of this set it can be
computed effectively and expressed by means of a;; and the operations U, o and *
(Section 3.3). The vector (Run(y), ..., Run(a,)) can now be proved to be a sol-
ution of CSE without assuming that the algorithm is proper. Moreover, we get an
algorithm (in a wide sense of the word) that, starting with the CSE, produces for-
mulas expressing the Run vector by means of a;; and the operations U, e, * and ®.

The main idea consists in a modified variable elimination method. While in
computing the least solution we eliminate x; from the equation

X1 = QX Va3 X, Vs,
by setting (Lemma 3.2.1)
Xy = a¥y(8,2%0 .. Ua1nXaUa1ns1)s
in order to get the Run-vector, we set
Xy = afy (@2 %U o0 Va1 %0814 )VET

To formulate and prove an appropriate lemma justifying the algorithm two-
auxiliary notions are needed.

The operation C (fixed at the beginning of Section 4.1) is said to be adequate
provided for any proper set S < seq(U) with £ ¢ S we have ’

U{eo)l res=} = (U{CO) tes)~,

C(s®) = (C(S))*.

ie.,
(4.5.2)
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Observe that S® means the co-iteration of § within NGL(U), while (C(S))®
is effectuated within the abstract quasinet V.

It can be proved (A. Lingas, personal communication), that there exist quasinets
‘with nonadequate C-operations. On the other hand, (4.5.2) is satisfied in all quasinets
-of our interest.

LeMMA 4.5.1. The C-operations, as defined in the quasinets NGL(D), QNR(D)
.and QNB(D), are adequate.

The proof is in Blikle [14].

Let o, oy be arbitrary labels with i < n, j < n+1. By an a, aytrace in A we
mean any finite sequence (ds, ..., @) of elements of U such that there exist labels
Bis -y Pusy With the following properties:

(1) ﬁl = 0 _and ﬂm+1 =0y,
@ By, ap, Bpr)eP for p=1,...,m
We denote by Tr(x;, o) the set of all oy, a-traces in 4.

Note that Tr(w, &) = FinTr(ey) fori=1,...,n
LeMMA 4.5.2. Consider two right-linear sets of equations:

Xy = di3 XV o Udiy X% Odine g,
{4.5.3)
© Xy = Gy Xy UdnnxnUdnn+l1
and . .
%y = d¥ (d12%2V ... VdipX0dynr YA,
Xy = dy1 X1V ... Udpy X Udany 1,
@54 e
Xp = dp1 X1V .. Uy X Olpnys -

Suppose that the C operation in N is adequate and (4.5.3) satisfies the following
«condition: ‘
(*) there exist sets Dy < seq(U), i< n, j <

(1) e ¢ Dy and dyy = C(Dyy) for i <
) Dy = Tr(o, o) Sor i,j<

3) Tr(oy) = Dy Tr(a)u ... uDi,.'“Tr(oz,,)uD,,,M Sor i<,
Then (Run(e;), ..., Run(e,)) is a solution of (4.5.4), and (4.5.4) satisfies (%) as well,
Proof. Note first that each Tr(o;, a;) consists of finite traces and therefore
each Dy; with i, < n is proper (Section 4.4). We shall now prove the equality

(4.5.5) Tr(ay) = D¥, (Dyy Tr(ez)u ... uDl,,Tr(oc,,)uDl,,H)uDi‘},

where for simplification the symbols “™” of concatenation are omitted. The in-

<lusion “2” is obvious by (2) and (3) (the latter implies Dy, & Tr() for i< n).

To show the converse inclusion, consider an arbitrary f in Tr(x,). By (3):
—either # € Dy,,, and we are done,

n+1, such that:
< n+l,

icm
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—or t = t;7t, with #, € Dy, t, € Tr(w), j < n

Two other cases are to be considered now:

—either j > 1, i.e., ¢ € Dy Tr(e;), and again we are done,

—or j = 1, ie., t, € Tr(a,), and the reasoning must be repeated.

It is easy to see now that either ze (Dy)™Dy; Tr(ey) for some m > 1, j >
or t € (Dy4)®. In both cases (4.5.5) holds. Now applying the operation C to both
sides of (4.5.5), we get (by Lemmas 4.4.1, 4.4.2 and by equation 4.5.2):

Run(a;) = diy (diz Run(a)u ..
and, by (3), we get, in a similar way,
Run(o)) = diy Run(o)V ... vdy, Run(o,)Udp .o
for i > 2. In effect, (Run(xy), ..., Run(a,,)) is a solution of (4.5.4).
To prove that (4.5.4) satisfies (*), all we have to show is that
e¢ Dy Dy; and D}, Dy; e Tr(og, o)
for j < n. This, however, is an immediate consequence of (x) for (4.5.3). m

To get the algorithm producing Run vector from CSE the following facts must
now be observed:

(1) If (4.5.3) is a CSE of an algorithm, then it satisfies (), since we can set
Dy = {(d}-

(2) Due to symmetry of variables the transformation described in the lemma
permits us to eliminate each variable x; with dy # 0 and preserves the property
that (Run(a,), ..., Run(a,)) is a solution.

(3) The transformatlon can be repeated as long as there exists x; in the set
with dj; # 0. If this is no longer the case, then the transformation is still applicable
but has no effect. In this case we make a substitution, as described in Theorem

. Udln—Run(an)Udln+1)Ud?l

13 Banach t. II
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3.2.3. This substitution preserves all solutions of the set and also preserves the
property (*).
ExampLE 4.5.1. Consider the abstract FC-algorithm

(otys @, 03) (a5 c, 002) (25,81, &)
(a2, by, 03) (o4, d, 25) (a5, 82 ols)
(“z » b2 3 !X4) (aﬁ 2 h” “4)

with the flowchart of Fig. 4.5.1. Clearly the pairs of actions b,, b, and g, g, rep-
resent tests in the program. The CSE of this algorithm is

X1 = aXa,

X, = byxsUby X,
4.5.6) Yo = ot

X4 = dxs,

X5 = £2X6' 81,

X¢ = hx,.

Suppose now that all we want to get is Run(x;). Therefore, we solve the CSE
with respect to x, , using the algorithm described in Lemma 4.5.2. After some obvious
substitutions we get )

Xy = aX,,
by cx,Ub, dxs,
Xs = grhdxsug;.

1

X2

We now apply‘ our transformation to x, and xs:
Xy = aXy,
Xy = (b1 ©)*bydxs0(by0)%,
X5 = (g2 hd)*g (@2 hd).
Now we substitute again and get
Run(ar) = a(byc)*b,d((g2hd)*g, (g2 hd))Va(by c)*.
Notice that, if we wish to find Zail(,), we apply to (4.5.6) the usual solving algor-
ithm described in Section 3.2, and we get,
Tail(a) = a(by 0y*b, d(g: hd)*s,
In the case of FC-algorithms we also get a fixpoint characterization of the Perp
vector.
THEOREM 4.5.1. For any FC-algorithm the vector (Perp(ay), ..., Perp(ay)) is
a solution of the following set of equations:
X1 = A1 XU oo UdynXy,
4.5.7)
Xy = Qpg X4 oo Ul X,y
In the general case Perp vector needs not to be neither the least nor the greatest
solution of this set.

icm
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The proof is analogous to that of Theorem 4.3.2 and consists in successive
application of Lemmas 4.4.4 eq. (3), 4.4.1 and 4.4.2. Also in this case we can use
the algorithm described above to get the Perp vector from (4.5.7). We need, however,
one more assumption about the algorithm to the effect that @;o0 = 0 for i< n,
Jj < n+1 (details in [14]).

5. ALGORITHMS OVER BUNDLES OF COMPUTATIONS

This section is devoted to algorithms over QNB(D). It is shown how these algorithms
can be used in proving properties of programs and what sort of program properties
can be investigated by these means.

5.1. Extension of the calculus of bundles

The calculus of bundles is extended here with some specific notation to be used
in describing properties of programs. Since in the sequel we deal only with non-
empty computations, they will be referred to, for simplicity, as computations.

Consider an arbitrary quasinet QNB(D), let f: .D — D be an arbitrary partial
function and let p: D — {true, false} be an arbitrary partial predicate in D. We
denote '

[P()] x « £()] = {(d. @) p(d) = true & d efD}u{e},
PG = {(@) p(d) = true}u{e}.

We shall also write [x « f(x)] instead of [true| x « f(x)] and [d]instead of [x =d].

Let p and g be arbitrary predicates and let ¢ = (d,, ..., d,) with 1 < m< o0
be an arbitrary (finite or infinite) computation. We say that c satisfies p at the en-
trance if p(d,) = true and we say that ¢ satisfies p at the exit if either m = o or
m < o & p(d,) = true. A bundle Bis said to satisfy p at the entrance (exit) provided
all computations in B satisfy p at the entrance (exit). Notice that inherently infini-
tistic bundles satisfy any predicate at the exit.

Bundles of the form [p(x)] are subsets of the unit E in the monoid of bundles.
In consequence, for any bundle B and any predicate p, we get the following subsets
of B:

[p(x)] B—the bundle of all computations in B that satisfy p at the entrance,

B[p(x)]—the bundle of all computations in B that satisfy p at the exit.

The following facts about bundles, which appear frequently in analysis of pro-
grams, can now be easily formulated:

(1) B = [p(x)]Blg(x)]—B satisfies p at the entrance and ¢ at the exit,

(2) [p(x)])B = 0—no computation in B satisfies p at the entrance,

(3) B[p(x)] = 0—no computation in B satisfies p at the exit,

(4) [p(x)]B = Blg(x)l—each computation in B that satisfies p at the entrance
satisfies ¢ at the exit (partial correctness in the case B = Tail(ay)).

Observe that (4) is equivalent to

[p()1B = [p(x)]Blg(x)]

13
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and therefore (1) implies (4). In fact, (1) asserts, besides partial correctness, that
each computation in B satisfies p at the entrance.
For any bundle B we set

Ent(B) = {d| [d]B # 0},

Ext(B) = {d| Bldlnseg*(D) # 0},
and we call these sets the set of entries and the set of exits of B. A vector of bundles
(By, ..., B,) is said to be finitistic (inherently Infinitistic) if all B, are finitistic (in-
herently infinitistic); cf. Section 2.4.

5.2. Fixedpoint theorems in QNB(D)

TREOREM 5.2.1. For any proper PD-algorithm the vector (Run(oiy), ...,
is the greatest solution of CSE.

Run(x,))

Proof is in Blikle [15]. Also in this case the assumption about properness of
the algorithm cannot be omitted.
COROLLARY 5.2.1. Let (Qy, ...
PD-algorithm. If Q; =

, On) be an arbitrary-solution of CSE of a proper
Tail(e)uS; with Tail(w)NS; = 0 for i < n, then

S; = Perp(a)
foralli<

The proof is immediate since, by Theorem 5. 2 1, Tail(o)osS, & Tail(u)w
UPerp(a;), but Tazl(ai)nS; = 0, hence S; = Perp(x;). m

A PD-algorithm over QNB(D) is said to be finitistic provided all its actions
are finitistic. Of course every finitistic algorithm is admissible, Finitistic algorithms
correspond to the usual programs weé deal with, but the nonfinitistic case also has
some reasonable motivation. In fact, to prove properties of a large program, we
have to structure it into a number of modules. Each module is then considered
independently and the corresponding Run(w,) bundle is established. These bundles
are assumed then to be actions of instructions of a global algorithm associated
with the program. This global algorithm, of course, need not be finitistic.

COROLLARY 5.2.2. For any proper and finitistic PD-algorithm the vector (Tail(e,),

.., Tail(a,)) is the only finitistic solution of CSE.

This is an immediate consequence of Corollary 5. 2 1 since for proper algomhms
Perp(w;) is always inherently infinitistic.

THEOREM 5.2.2. For any proper and finitistic FC-algorithm with the set of Instruc-

tions P = {(o, By, B)| i < m, j < n+1} the vector (Perp(wy), ..., Perp(s,)) is the
greatest solution of the following set of equations:

X, = B, X;u ... UB,,X,,

(5.2.1)
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Proof. Let A = (V,a;,¢, P) be a proper and finitistic FC-algorithm with
P as specified in the theorem and let 4, = (V, a4, €, Py), where Py is the result
of setting B, = 0 for i =1, ...,nin P, Clearly, (5.2.1) is the CSE for 4;. On the
other hand, for all i< n

Taily (o) = C(FinTry (w)) =0
and

Inf Tra () = Inf Tra(e),
hence

Runy () = Perp (o). m

5.3. Proving properties of programs by bundles of computations

Two examples are investigated in this section. The first concerns a common pro-
cedure with output. In this case bundles permit us to extend the well-known input-
output analysis—as effectuated by relations—to an analysis of computations. Proper-
ties proved in this case are strong enough to imply partial and total correctness
as particular corollaries. In the second example we investigate a system-like program
that has no output at all (i.e., it always runs infinitely) and therefore cannot be
analyzed by relations. Using bundles, we prove properties concerning deadlock
and overload in the program.
ExampLE 5.3.1. Consider the well-known procedure NINETYONE
procedure NINETYONE;
begin
if x > 100 then x := x—10
else begin
x = x+11;
NINETYONE;
NINETYONE;
end
end

We assume D = Int and we set:
Notation
= [x > 100| x « x—10],

The algorithm
(“l ’ Q; E) 2

= [x € 100| x « x+11], (ay, F, oy ay).
The CSE is
X = FXXuQ.
Now let
Co = [100]FQQ,
= [100—i]FGC;.., for 1<i<9,

C = CouCyu ... UGCy.
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We shall prove the following:
0 o0

(53.1) Tail(a,) = U1 FlQCCitu L_j1 FiQ*Citug.
{m= i

This equation shows explicitly what all the finite computations of our procedure
look like. To prove (5.3.1), we set

B, = L) FiQ2Ci™,

=1

0
B, = | F')QCC5, R = B,uB,UQ.
1=l

Now, on the strength of Corollary 5.2.2, all we have to show is that R satisfies
CSE. Observe first the following equations that are easily proved:

() € =91 < x < 100]C[91],

@ C = PICDI],

(3) B, = B,[91],

4 B, = B,[91],

(5) 9118, =0,

(6) 9118, = PUIFQC = [D1IFQIN]C = PIIFRCs = Co,

(M) B,Q = B,P1I@ =0,

® B.Q = B,P1IQ = 0,

(9) 100[B,] =0,
“(10) FQ = FQ[91 < x < 100],

(1) foralll1 €5 <9,

[90+s]1B; = [90+s]FQ[91+5]C = [90+5]FOC o~ (s+1) = Cio=ss

(12) 91 < x < 99]1B, = 0.

Now we can show R to be a solution of CSE. Compute:
FRRUQ = F(B,B, B, B,uB QUB, B, UB, B,UB;QUQBUQB,L0*HUQ.
Using equations (1)«(12), we now show the following:
FB, B, 5 FB, 0118, 7 FB, C; = Q Focci,
FB, B, 7 FB, 9118, 50,
FB,0 %0,

o0
FB, B, 55 FB,91)B, 5 FB.Cy = | FIQ*CH,

FB, B, 75 FB,[%1]B, %0,

FB,0 %0,
FQB, &5 FQI91 < x < 1001B, 55 FQI91 < x < 99]B, ;7 FOC,
FQB, 75 FQ91 < x < 10018, g5 FQ[1001B, = FQ[100]FQ* = FQC, < FQC.
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In effect, we get
o0 )
FRRuUQ = |_J FIQCCs*UFQCuU U F'Q*Ci ' UFQ*uQ = R.
i=2 i=2

Therefore, R = Tail(ay).

Equation (5.3.1) shows any finite computation of the program to be an element
of either B, or B, or Q. We can specify now the conditions under which each of
these cases appear:

(1) for any d > 100,

[d] Tail(x) = [d1Q = {(d, d—10), e},
(2) foranyn =0,1, ...,
[100—11 x n) Tail(oty) = [100—11 x n] B,
= [100—11xn] F*+1[111]1Q2[91]C3[91],
(3) foranyn=0,1,...and t =1, ..., 10,
[100—11 x n—1] Tail(ey) = [100—11xn—1t]B;
= [100—11xn—t]F"*+1[111—¢]Q[101 —¢]C[91] C5[91].
The three assertions above describe explicitly and totally the bundle of all
finite computations of our program. In particular, we get here a proof of termin-
ation in the domain D = Int, since Ent (Tail(x,)) = Int and the algorithm is deter-

ministic in the sense that any two different computations are disjoint. In consequence,
Perp(ay) = 0.

START

Fig. 5.3.1

ExAMPLE 5.3.2.. Consider a sequential consumer-producer program, as given
by the flowchart of Fig. 5.3.1. We shall assume 5;, 52, 41 , 42 to be arbitrary positive
integers and x, y to be integer variables,
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The program contains two operational modules @, and Q. The former can be
‘regarded as a routine consuming x and producing y, the latter—as a routine consum-
ing y and producing x. The entire program is clearly supposed to run permanently,
hence no output is expected. The program properties we shall analyze here concern
occurrences of deadlock and overload. Deadlock means here that the program
executes permanently the loop (P; P,)®, and overload that for one or both variables
x and 'y the sequence of corresponding successive values contains an infinite increas-
ing sequence of numbers.

Notation The algorithm
Py=[x2 s (x,9) « (x, )], (etg, P1Qy, )
= [X<S11 (x=y)<—(x,J’)], ,(alsl)buz)

= [(x,¥) « (x—51, y+a1)l, . (02, P2Q2, 2)
Py = [y = 8| (x,9) « (x, )], . (o2, P2, y)

P, =y < sl (x,9) « (9],
Q2 = [(*, ) « (x+42,y—52)],
D = Nat x Nat
The CSE is . .
X, = P1Q1X1U§‘1X2,
X, = PzQzXzUFzXl-
To get Run(x,) from this set, we apply the algorithm described in Section 4.5:
X, = (P191)*F1X2U(P1Q1)m;
X, = (PzQz)*?zX1U(PzQ2)°°~
It is easy to prove now that (P;Q,)* = (P;Q,)* = 0, hence
= (P1Q1)*I_’1(P2Qz)*ﬁth

therefore

X; = ((P1Q1)*F1(Pz Qz)*Fz)*OU ((P1Q1)"TI"1(P2Q2)VP1)°°,
and finally,
(53.2) Run(ay) = ((PyQ*P1(P2Q:)*P,)>.

The deadlock-overload properties of the program depend clearly on jthe par-
ameters 53, 52, 41, 42 . Full analysis of all the cases would be too long for the purpose
of this paper. We shall describe only some of them. Calculations can be found
in Blikle [14].

Let n and m represent current values of x and y respectively. Denote

R= (P1Q1)*E1(P2Q2)*Fz~

icm
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Case 1. (gy—8,)+ (g2 —5,) > 0: overproduction

Subcase 1.1. g, —5, > 0, g,~s, > 0, n 2 s;, m > 5,. In this subcase we can.
prove the following:

(i) for every k = 0, [(n, m)] R¥(P,P,)® =0, ie., deadlock never occurs,

(ii) overload does occure for both x and y.

Case 2. (g5 —581)+(g2—582) < 0: overdemand

In this case, for any n, m > 0, there exists k > O such that

[¢r, m)] Run(ey) = [(n, m] R (P P,).

In other words, deadlock after some finite number of steps and, of course, no over—
load in consequence.

Case 3. (ql——s1)+(qz—§2) = 0: balance

Subcase 3.1. g—8; =0, g,—s, = 0, n > 51, m = 5,. In this subcase we can
prove the following: . )

(i) for any k 2 0, [(n, m)]R"(lE1 P)® =0, i.e., deadlock never occurs,

@) for any k > 0, if [(n, m)]T* = [(n, m)] T*[(n1, m,)], then n4+m = n,+m,,
which means that x+y is an invariant of the program In consequence, the over—
load will not occure.

6. ALGORITHMS OVER 3-RELATIONS
This section is devoted to algorithms over QNR(D) considered as a tool in develop—

ing input-output analysis of programs. In fact, this analysis is extended now with
an analysis of termination and looping.

6.1. An extension of the calculus of relaﬁon§

The operation of composition of relations can be extended to the case in which
one of the arguments (relations) is replaced by a set. We define this extension for
the general case of arbitrary binary relations. ' ’

Let 2 be an arbitrary set. If R € Rel(2) and C = £, then CR and .RC denote:
subsets of Q defined as follows:

aeCR= (AceC)cRa,
aeRC= (AceC)aRec.

Notice that CR is the image of C with respect to R and RC is the appropriate
coimage. In particular 2R is the range of R'and RQ its domain. It is easy to prove
that, for any Ry, R,eRel(@), Cc 2 aud families {R;| iel}; R;e Rel(Q),
{C)l jeJ}; C; = 2, we have

Ry(R;C) = (R1R2)C C(R(R;) = (CR)R,
UR)C=RC C(JR)=UJCR
iel iel el iel

= C;R, R C;) = R, C;.
(jgci)Rl ILEJ iR 1(}% ) g e
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Moreover, the functions @(R, C) = RC and ¥(R, C) = CR are monotone with
respect to each of the variables.

In the sequel we shall frequently have to do with vectors of relations (R, ..
By the domain and range of (R,, ..., R,) we shall mean respectively the vectors
of sets (R; 2, ..., R, and (2QR,, ..., 2R,). The vector (Ry, ..., R,) is said to be
Junctional if all of the R; are functions.

To deal with concrete programs and prove their properties in a systematic
way, we shall need an explicit calculus of relations. In preceding sections we de-
scribed relations as sets of pairs, e.g., Q = { (In, 51, [n(s—1), s~ 1])| n,se Re}u
U{(8, 8}. In this section we shall use a notation introduced by Mazurkiewicz
for the case of functions in Rel(D) and extended here to functions in Rel;(D). Let
J: D— D be an arbitrary function and let p: D — {true, false} be an arbitrary
predicate in D. We denote:

., Ry).

Pl x: = f0)] = {(d, /(D) p(d) = true & d e fD;} U {(3, 8)}.

Notice that x in the above formula is a binded variable and, therefore, [p()]
x:= f(x)] and [p(y)| y: = f()] denote the same function. We shall also write

[x: = f(x)] [truel x: = f(x)],
[p()] P x: = x].

The following equalities are useful in calculations:
M ()] x: = f)la()] x: = g(x)] = [p(x) & g (f))] x: = g(f(M)],
@ ) x: = fEVIg)| x: = f(x)] = [p(x) va)| x: =f(3€)],(jr 4
@ [N = [p() & a(x)] = [g()] [P
@ If p(x) = g(x), then [p(Ig(x)] = [p(x)].

instead of
instead of

6.2. QNR(D)-oriented_ theory of algorithms

‘This section contains the case oriented notions and theorems needed in proving
properties of algorithms (programs) by d-relations.

In the remainder of Section 6, d-relations in Rel,(D) will be denoted by capitals
P,0,R,S, ..., possibly with indices, subsets of Du {8} by capitals 4, B, C, ...,
also possibly indexed, and variables ranging over Rel;(D) by capitals X, X;, X,, ...
For any B = D we shall set By = BU {4}, hence, in particular, D; = Du {8}. We
shall also say simply “relation” instead of “-relation”. .

Let 4 =(V,0;,¢, P) with V= {a,, ..., o} be an arbitrary PD-algorithm
over QNR(D) to be fixed for the sequel. The CSE for this algorithm is the follow-
ing:

X, = g Ry (X1, wes Xn)s
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where (a;, Ri., z) are instructions in P (cf. the assumption made in Section 4.3).
Tt must be recalled that each algorithm in QNR(D) is proper and, therefore, we
shall not refer to this notion here. :

The algorithm A is said to be finitistic provided all R;, are finitistic (see Sec-
tion 2.5) and is said to be nonfinitistic otherwise. For the majority of simple programs
we deal, of course, with finitistic algorithms but, similarly as for QNB(D), non-
finitistic algorithms may appear in analysis of large programs (see explanation
in Section 5.2). Also in this case all finitistic algorithms are admissible.

Notice now that each instruction («;, R, z) can be considered as a binary
relation in the set V* x D of state vectors:

15 ), R, )2, do) = @Wyy = aw & y, = zw] & dy Rd,

for (y1,dy), (;,d2) € V*x D. With the algorithm A we can associate now the
next-state relation =>4 in V* x D defined as follows:

(1, d) =4 02, ) = @, R, 2) € P) s, di) (e, R, D)0 o)
It is interesting to note, that for each «; in ¥ and any d,, d, in D
d; Tail(e)dy = (o, d)[=41*(e, dy).

This is in fact the original Mazurkiewicz definition of Tail(x).

The algorithm A is said to be deterministic provided =>4 is a function and is
said to be nondeterministic otherwise. A necessary (but not sufficient) condition
for A to be deterministic is of course that all actions be functions.

To deal with the problem of termination of algorithms, we now introduce three
auxiliary notions. Namely, for each label «; in V, we set:

Stop(e;) = Tail(a)) D,

Loop(e;) = Perp(o){0} - {4},
Block(x) = D— (Stop(a)u Loop(as))-

Remark: in the definition of Stop(e) we set on purpose D, rather than Dj.
Also, since {8} is always the range of Perp(e;), we have Perp(e) {8} = Perp(e) D;.
In analyzing algorithms we shall be especially interested in the following part-
icular sets: .
Stop(a;)—the set of all inputs, where the algorithm terminates its run reach-
ing the end, ’
Loop(x;)—the set of all inputs, where the algorithm runs indefinitely,
Block(«;)—the set of all inputs, where the algorithm terminates its run without
reaching the end (is blocked).
LemMA 6.2.1. If A is deterministic, then Run(o), Tail(a) and Perp(w) dre all
Sfunctions for i < n.
LEMMA 6.2.2. If A is finitistic, then for each i < n, Tail(w)nPerp(o) = 0.
LEMMA 6.2.3. If A is finitistic, then for each i < n, if Run(ow) = TyuP;, where
T, is finitistic and Py is inherently infinitistic, than T; = Tail(x) and P; = Perp(%).
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Levva 6.2.4. Ifdis determmzstlc, then for each i <
dand Stop(a;)nLoop(o;) =

The proofs are obvious.

It has been proved in Section 5, that the Run vector of a proper algorithm
is the greatest solution of CSE in QNB(D). It turns out, however, that this is not
the case for QNR(D). Consider the following example of an algorithm, where D
is the set of integers:

n, Tail(e)"Perp(oy) = 0

(g, [x2 0] x :=2x], 8),
(azl, [x <0] x:=x-1], a).
The CSE is now as follows:
=[x < 0] x:=x-1]Xu[x 2 0] x := 2x].

From this, by Theorem 4.3.1 and the algorithm, to get Run vector which was de-
scribed in Section 4.5, we get

Tail(ey) = [x = 0
Run(ay) = [x= 0
On the other hand, each function
=[x=20] x:=2x]Julx < 0] x:=14],
with d € D, is also a solution of CSE. As can be proved,
=[x>0 x: —2x]uU[x<0] x :=d]

| x:= 2x],
x 1= 2xJulx < 0] x:= d].

is the greatest one. Observe now that for each d,
[x < 0] x :=d]D,~ {6} = Loqp(al).
Therefore, any of the above solutions consists of Tail(«,) and of a component
disjoint with Tail(x;), whose domain is Loop(a).
This fact can be generalized into the following theorem:

THEOREM 6.2.1. Let (Qy, ..., Q,) be an arbitrary solution of CSE. If Q; =
US;, where Tail(u)nS; = 0 for i < n, then

8iD;= {8} = Loop(w)

Tail(a)v

forign .
Proof. The proof is very similar to that of Theorem 5.2.1. Suppose that (Qy, ...
..., 0,) is a solution of CSE, i.e.,

(621) Ql = ,E;J Riz‘pz(le ceey Qn); i= 1, ey B

We prove the following auxiliary assertion:

(*)  For any control state w € V*, w # ¢ and any d, g € D, with dp,(Qy, ..
there exist:

- Ong

——an instruction («;, R;,, z),
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' —an element d; € D; with dR;,dy and d; @, Q1 ..., Q)& Where w(ay — 2)wy
(see Section 4.2).
Now let dS;g forsome i < n, d, g € D;. Therefore, dQ,g, ie., doy,(Qy, ..

and, by (*), we get a sequence of instructions

s (“jn Rj..zn z),

008

(“jl’ Rj,z“ 21), e

a sequence of corresponding control states

Woy oors W
and a sequence of elements in D
dy, ..y ds
with the following properties:
) wo= o, = o, ’ )
(i) w(oy, = 2Z)Werr for k<s

(i) dR;,,d; and di 1 R;.,dp for 1l <k<s

(iv) dypw(Qy, ..., On)g Whenever s < oo.

Due to (*), these sequences can always be extended, provided w, # & We
can assume therefore our sequence to be either finite with w, = & or infinite
with wy, # ¢ for all k.

In the former case, we get ¢,,(Qy, .. s Q,,) =I5, (Ryz,, ir» R_,,'z,) & FinTr(a;)
and dC(Rj.z,,.:» Riz) g, In. consequenge, dTail(oy)g, that implies d = g.= 0,
since dS;g and Tail(%)nS; = 0. If we therefore assume d # J, we must get an
infinite trace (Rjim azzs ) € MFTr(ey) with dR, ., d, and di—y Ry for
1 <k< oo. Therefqre dC(Rh,l, ,za0 ) 0, and, hence, dPerp(a) 6, i.e.,
de Loop(a, .

The above theorem has a number of important corollaries. Easy proofs are
omitted here.

COROLLARY 6. 2 1. The domain of (Run(al)
greatest solution of CSE.

COROLLARY 6.2.2. The CSE has exactly one solutton iff U Loop(o) =

Run(a,,)) is the domain of the

.i.e., iff the algorithm does not loop starting with any label.

COROLLARY 6.23. If (Qy, ..., Qn) is an arbitrary solution of CSE, then QO
= Tail(a,) iff Q1 DsnLoop(a,) = O

This corollary describes just the known fact that proving total correctness
requires proving partial correctness and termination (see Section 6.3).

COROLLARY 6.2.4. If A is a finitistic algorithm and (Qy, ...,
solution of the CSE, then Q;{8}— {8} < Loop(a;) for i < n.

COROLLARY 6.2.5. Let A finitistic and deterministic and let (Tail(ocx)uSl,

., Tail(a,)US,) be an arbitrary solution of CSE. If Sy = [x ¢ Stop(ey)| x 1= 8],

then S; = Perp(o,).

Q,) is an arbitrary


GUEST


206

A. BLIKLE

Both above corollaries can be used in proofs of nontermination of programs.

COROLLARY 6.2.6. If A is deterministic, then (Run(a,), ..., Run(%,)) is a makimal
element in the set of all functional solutions of CSE.

The term “maximal” should not be confused with “the greatest”. In fact, there
is in general more than one maximal element in the set of functional solutions of
CSE (cf. the example preceding Theorem 6.2.5). The corollary says that each ex-
tension of the Run vector that is a solution of CSE is not functional.

6.3. Partial and total correctness of programs

Suppose we are given an admissible PD-algorithm A to be analyzed and suppose
(@1, ..., Q,) has been shown to be a solution of the corresponding CSE. Since the
Tail vector is of course the least solution of the CSE, we obtain therefore

(6.3.1) Tail(¢y) < Q; .

Suppose now Q, to be a function defined “explicitly” by the equation
0= D@ x = S,

Together with (6.3.1), this implies the following assertion:

®

for any d € D, if p(d) = true and if, when d is the initial value, the algorithm
stops, then the terminal value is f(d). :

Observe that p(d) = true does not imply in this case that 4 stops for d. Proving
properties like (+) is usually referred to as proving partial correctness of programs
(cf. Hoare [23]). In consequence, proofs of partial correctness in our approach
consists merely in showing (checking) that the appropriate (Qy, ..., Q,) is a sol-
ution of CSE. A difficult problem that arises in such proofs is to get the appropriate
0;’s. We usually know what the Run(x,)—or at least Tail(o,)—should look like,
since this is the intended meaning of the program (algorithm), but at the same time,
we know very little about Run(e;) or Tail(x) for i 2 2.

Suppose now that we have proved (Q;, ..., 0,) to be the least solution of CSE.
This means

(6.3.2) Tail(ny) = Q1 = [p()| x := f(I],

and now we can claim the following:

(**) for any d in D, if p(d) = true, then if d is the initial value, the algorithm

stops, and the terminal value is f{(d).

In this case p(d) = true does imply that A stops for d. Proving assertions like
(*#) is referred to as proving total correctness of programs (cf. Manna and Pnueli
[27]). Observe that (6.3.2) gives even more than total correctness, since it implies
the following:

(%) for any d in D, p(d) = true iff A stops for d, and, if A stops for d, then the
terminal value is f(d).
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The usual proofs of total correctness, as carried out by Manna and Pnueli
[27] or many other authors, do not deal with the behaviour of the program outside
of the domain of termination. In fact, if for some d in D our program does not
stop, we have two possible cases to be considered:

(1) the program runs infinitely, i.e., d € Loop(a,),

(2) the program stops before the control reaches the terminal state e, ie.,
d e Block(ay).

Analyzing programs by means of Run vectors in QNR(D), we can systematic-

_ ally distinguish between cases (1) and (2).

The case (2) can be split again into subcases, corresponding to control states,
where the program can be blocked. An approach that provides such analysis for
FC-algorithms is described in Blikle [12].

6.4. Proving properties of programs by J-relations

We give here three examples of correctness proofs and one example of an equivalence
proof. We shall denote in the sequel:

Re—the set of all real numbers,
Nat = {0,1, ...},
Nat* = {1,2, ...},
Int={.,-1,0,1,..}.
ExaMPLE 6.4.1. Consider again the procedure FACTORIAL from Examples
4.1.1 and 4.2.1:
procedure FACTORIAL;

begin
if n =0 then s :=1
else begin
n:=n-—1;
FACTORIAL;
n:i=n+l; .
§i=s§Xn;
end;
end

We assume D = Rex Re, and we set

Notation The algorithm

Q= [n=0| (n,s):= (ﬂ,l)], ((11, Q,E),
F=[n#0| (n,5):= (n—1,5), (otg, F, oty 00),
S =[n,s) = (n+1,s(=+D)], (@2, S, &).

The corresponding CSE is the following:
X, = FX, X,u0,
X, =S,
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and this is equivalent, by'Theorem 3.2.3, to the set

X, = FX,;SuQ,

X, =S.

‘We state now the following hypothesis
Tail(a) = [n e Nat| (n,5) := (n; nl)],
Perp(ay) = [n¢Nat| (1, ) := 4],

and we shall try to prove it. Denote R = [neNat| (1, 5) := (n, n])] and P =
Tn¢ Nat| (1, 5) := 6l. We show first (R, S) to be a solution of (6.4.1):

FRSUQ = FlneNat| (1, s) := (n, n)]SUQ
=[n#0&n—1eNat| (n,9) := (n—1, (r—DN]SUQ
=#0&n—1eNat] (n,s):= (n,nh]uQ
= [neNat| (n,5) := (n,n))] =

Hence, (R, S) is a solution of (6.4.1) and, therefore, the partial correctness
«of the procedure is proved. In fact, we have proved the following: for any n in Nat
.and s in Re, if for (n, s) the algorithm stops, then the output is (n, n!). We shall show
now (RUP, S) to be a solution of CSE:

F(RUP)SUQ = RUFPS = RUF[n¢Nat| (n,5) := J|S
= Ru[n # 0&n~1eNat| (n,s):
= Ruln # 0&n—1¢eNat| (n,s):
= Ru[n¢ Nat| (n,s) := 6] = RUP.
Corollary 6.2.4 guarantees now that, for any (r, s) with n e Nat, the algorithm
Tuns infinitely. To show that it loops nowhere else, we shall prove (R, S) to be the

least solution of (6.4.1). Suppose this is not the case. Then there exists a set B = Nat x
x Re with B # Nat x Re such that (Ry, S) is a solution of (6.4.1), where

R, =1[(n,s) e B| (n,5) := (n,n)].

(6.4.1)

a8
4]

‘Consequently, we get

I(n,5) € Bl (n,5) := (n,n!)] = F(n,s) € B ‘(",S) = (n, n)]SUQ
=[r=0v(#0&@n-1,59)eB)| (1n,5):=(n,nY],
and hence,
B = {0}xReu{(n,s)| n+# 0& (n—1,s) € B}.
“This implies :
(Vs e Re)[(0, s) e B],
(V(n,5) e B)[(n+1,5) € B],

hence, B = NatxRe, contradicting the assumption. Finally, (R, S) is the least
solution of (6.4.1); thus, by Theorem 4.3.1, Tail(«;) = R, and by Corollary 6.25,
Perp(a;) = P ‘

In this way the full proof of correctness and termination of the procedure
FACTORIAL is accomplished.
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ExaMPLE 6.4.2. Procedure NINETYONE.
procedure NINETYONE;
begin
1fx>100thenx =x-10
else begin
xi=x+11; «
NINETYONE;
NINETYONE;
end;
end
We assume D = Int and we set:
Notation The algorithin
Q= [x > 100] x := x—10], (21,0, &),

= [x < 100] x := x+11],
The CSE is:
(6.4.2)

Our hypothesis is:
Tail(ay) = [x <
Perp(ozl) = 0.
Denote R = [x < 100] x := 91]U[x > 100] x := x~10]. We shall show R
to be a solution of (6 4.2). Compute:
FRRUQ = ([x < 89 x :=91]U[89 < x < 100] x := x+1)RUQ
= [x < 89| x:=91]JU0U[89 < x < 99| x :=91Ju
ul99 < x < 100} x := x—9JU[x > 100| x 1= x—10]
100] x := 91Jufx > 100| x := x—10] =
This terminates the proof of partial correctness. We have to show now that R is
the least solution of (6.4.2). Suppose this is not the case. Let 4 = (— o0, 100),
A # (= o0, 100), B = (100, +c0), B # (100, +c0) and let
' R, = [xed| x:=91lu[xeB| x :=x—10]
be a solution of (6.4.2). We get therefore (we replace here & by , )
FR,R,UQ = ([x < 100, x+11 € A| x := 91]u
v [x < 100, x+11 €B] x:= x+1])R1UQ
[x < 100, x+11 €d,91ed| x:=091Ju
ulu
Ux< 100, x+11e B, x+1€4d| x:
ulx<100,x+11eB,x+1€e€B] x:
U [x > 100] x := x—10]
= [xed| x:=91Ju[xeB| x:=x—10].

(oy, F, ag004),

X = FXxuQ.

100} x := 91]ufx > 100] x := x—10],

= [x

[}

91ju .
x=9Ju

14 Banach t. IT
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The last equality, of course, follows from the assumptlon that R; is a solution of
CSE. We get from it

(6.4.3)
and therefore,
[x < 100, x+11eB,x+1€eB| x: =x- -9] = [x = 100] x := 91].

Now we can state the following equation that must be satisfied by the set 4:

B = (100, + ), .

= {x| x<100,x+11€ 4,91 ed}u
(6.4.9) U {x] 89 < x< 100, x+1e4d}u
v {100}
Therefore
1) 100e 4,
2)if90 <y<101&ye4d, theny—1ed.
In effect,
6.4.5) (89,100 < 4,

hence 91 € 4. From (6.4.4), we now get the following:
if y < 111 and y € 4 then y—11 e 4.
This, combined with (6.4.5), implies
(—0,100) < 4
whxch together with (6.4.3), contradicts our assumption. We have shown in this
way that R is the least solution of CSE (6.4.2), hence, by Theorem 4.3.1, R = Tail(a;).
In consequence, Stop(a,) = Int, hence, by .Lemma 6.2.4, Loop(2;) = O, ie.,
Perp(ay) = 0. In this way our hypothesis is proved. m
ExampLE 6.4.3. Consider the following nonrecursive procedure (Dijkstra
[19D).
procedure GREATEST COMMON DIVISOR
begin_
while n #mdoif n >m then n:=n—m else m ;= m—n
end
Suppose we want to- analyse this algorithm only in the case n and m range
over positive integers, i.e., D = Nat* x Nat*. We set:

Notation The algorithm
(aly [n = m]’ 8);
(aly [Tl # m]’ “2)9
=[n>ml n:=n-m, (02, F, a5),
=[n<mm:=m-n], (a3, G, ay).

We write n := n—mto abbreviate (n, m) :=
ogously. The CSE: ‘

(n—m, m) and for m := m—n, anal-

= [n# mX,0[n = m),

(6.4.6) X, = (FUG)X,.
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Our hypothesis:
Tail(“l) = [(n9 m) = (g(n: m)a g(n: m))]; Perp(oh) =0,
Tail(o,) = (FUG) Tail(oy); Perp(ay) = 0

where g(n, m) is the greatest common divisor of n and m.

Denote R = [(1, m) := (g(n, m), g(n, m))]. We shall prove (R, (FUG)R) to
be a solution of CSE (6.4.6). The following properties of g(n, m) will be used:

if n = m then g(n, m) = n,

if n > m then gln—m, m) = g(n, m),

if n < m then g(n, m—n) = gn, m).

Compute:

[n # m(FU@RU[n = m] = [n>m| (n,m):= (gn—m,m), gln—~m, m))ju
vn < ml (n,m) = (g, m—n), g(n, m—n))]u
vn=m| (n,m) := (n, m))

=[n>m| (n,m):= (gln, m), gn, m))]u
uln < m| (m,m) := (g(n, m), gln, m))]o
vn =ml (n,m) 1= (gn, m), g(n, m))]

='R.

We shall show now Perp(o,;) = 0. Since this implies Loop(a;) = &, we shall
have our hypothesis by Corollary 6.2.3. Solving CSE (6.4.6) in a modified way
to get the Run vector, we get

Run(a;) = ([n # m(FOG)Y*[n = mu ([n # m(FUG)=.
Since our algorithm is finitistic, we get, by Lemma 6.2.3,

Perp(ocl) =(ln# ml(FUG))®
=(n>mln:i=n-mulnp <ml m:=m—-n)* =

This is of course true by the assumption that D = Nat* x Nat*.
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