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0. Introductlon

This paper reports the activities of the participants of the Seminar on Infor-
mation Storage and Retrieval Systems conducted at the Banach Center during
the Mathematical Foundations of .Computer Science Semester, and of the group
formed at that seminar to continue the studies.

The activities are continued at seminars at the Institute of Computer Science of the
Polish Academy of Sciences. The purpose of this work is an attempt to create a sort
of common language to describe what is being done by the designers and by the users
of information storage and retrieval systems. Moreover, it is expected to facilitate
the teaching of the subject, being a proposal of uniform foundations.

We do not claim that the purpose has been fully achieved, although a concrete
proposal has developed.

We hope that extensive use of the methods of discrete mathematics (by which
we mean logic and combinatorial mathematics) should help towards a better under-

standing and a better organization of activities connected with information storage
and retrieval.

[215]
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Historically, the subject was started independently by Wong and Chiang [26]
and Pawlak [24]. The ideas of [24] were elaborated by Marek and Pawlak in [19],
[20], and finally in [21]. These papers were concerned mainly with a formalization
of the subject and investigated the logical properties of the adjoined language.
Then, in [16], combinatorial problems were tackled, connected with organizing
the memory of a computer while implementing an information storage and retrieval
system. Further developments along this line were presented in [11], [12], [13], [14],
[17]. All this is presented in some detail in the present paper. The more recent de-
velopments are outlined in the last section, entitled “Perspectives”.

The paper is organized as follows:

In Section 1 a very simple information storage and retrieval system is presented.
Clearly, this system is not taken from real life, since it consists of only 50 objects.
Nevertheless, it may serve as a good example of the kind of systems that will be
dealt with in the remainder of the study. Then, in the next two sections, the syntax
and the semantics of a formal language tailored to deal with the problem, is intro-
duced. This language is a kind of intermediate language between propositional
and predicate calculi. As in the latter, there are two levels of the language: terms
and formulas. Terms are interpreted as sets of objects (documents or records) of
a system, whereas formulas are interpreted as truth values (truth or falsity). A query
submitted to a system can be either a term or a formula, In the first case the response
of the system is the set of records relevant to the query. In the second case the response
is “yes” or “no”.

We introduce the set of axioms for terms and formulas. Terms are ruled by
the axioms of Boolean algebra enriched by certain specific axioms, for formulas
we have the propositional calculus axioms. In the resulting formal system we are
able to prove theorems, and to transform, in a uniform way, terms and formulas
into equivalent, more suitable forms. Consequently, we can, to some extent, shift
the burden from processing large files of documents to processing strings of symbols
(expressions of our language), the latter being far easier. The normal forms described
in Section 4 are examples of expressions suitable for the computer, into which we
transform the queries entering a system. Moreover, these forms are the main tool
of proving, in Section 5, the completeness theorems which confirm that our axioms
were adequately chosen. In the next two sections algebraic properties of our systems
are investigated; in particular, such notions as a subsystem, a quotient system, etc.
are introduced. In Section 8 an implementational proposal, based on transforming
the queries into a normal form, is presented. In the next few sections certain com-
binatorial problems are studied, connected with the organization of the memory of
an information storage and retrieval system implemented on a computer. Classes
of families of sets are introduced, which can be effectively stored in storage devices of
different types, and their structure is studied in a systematic way. A number
of implementational algorithms based on this theory is presented. In the last section
some recent developments are outlined. In particular, certain proposals concerning
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possible extensions of the language and some implementational methods are in-
cluded.

Throughout the text we use the standard mathematical notation, such as 2(X)
(the power set of X), |[X] (the cardinality of X), 25, 4S (the domain and the range
of a function S, respectively).

Having been active participants and organizers of the seminar on information
storage and retrieval at the semester and after it, we want to express our gratitude
to Professor Z. Pawlak who continuously stimulated the activities of our group
and actively participated in them.

1. An example

Suppose an information storage and retrieval system contains information about
a group of 50 human beings. We say that these human beings are the objects of our
system. Let each object be classified in respect of three attributes: sex, profession
and age. For each attribute we have a set of associated descriptors:

sex

«) male,

p) female;
profession

a) clerk,

b) farmer,

c) other professions,

d) no profession;
age

A) less than 25,

B) between 25 and 50,

C) more than 50.

Our classification is exhaustive, in the sense that the descriptors within each
attribute exhaust all the possibilities. If a classification does not satisfy this condition
then new descriptors of the type other profession, no profession can be added to
satisfy it. The second important feature of our classification. is that it is exclusive,
i.e., within one attribute two descriptors exclude one another. Again, if this is not
satisfied for two descriptors a; and a,, then we replace a,, a, by three descriptors:
“a, and not 4,”, “d, and a,”, “a, and not a,”. Each object can be given its de-
scription—the sequence of descriptors corresponding to it, one descriptor for each
attribute. If our objects are indexed by natural numbers 1, 2, ..., 50, then the list
of descriptions and corresponding objects may be, for instance, as follows:

aad {4},

aaB {19},

aaC {11},

abd  {17,28,46},

abB {1, 20,33, 38, 44, 50},
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abC a,
oacA a,
acB {7},
acC  {16,24,29,40, 43},
add  {10,30, 42},
adB 9,
adC  {3,25,39},
Bad {2,6,9,23,34,35,49},
paB 9,
BacC 9,
pb4a  {8,21,31,37,45},
poB {12},
pbC g,
Bed  {13,22,32,41,48},
BeB g,
BeC  {15,27},
pd4 {5},
BdB  {14,36,47},
pdc  {18,26}.

From this list we can determine, for each descriptor, the set of objects having
an occurrence of this descriptor in their descriptions:
Ue) = {4,19,11,17,28,46, 1,20, 33,38,44,50,7, 16, 24, 29, 40, 43,
10, 30, 42, 3, 25, 39},
U(p) = {2,6,9,23,34,35,49,8,21, 31, 37,45, 12, 13, 22, 32, 41, 48,
15,27, 5, 14, 36, 47, 18, 26},
U(a) = {4,19,11,2,6,9,23,34, 35, 49},
U®) = {17,28,46,1, 20, 33, 38, 44, 50, 8,21, 31, 37, 45, 12},
U(e) = {7,16,24,29,40,43,13,22, 32, 41,48, 15, 27},
U(d) = {10, 30,42, 3,25,39,5, 14, 36,47, 18, 26},
U(4) = {4,17,28,46,10,30,42,2,6,9,23, 34,35,49, 8,21, 31, 37,
45,13, 22, 32, 41, 48, 5},
U(B) = {19, 1,20, 33, 38,44, 50, 7, 12, 14, 36, 47},
Uu(C) = {11, 16,24,29,40,43, 3,25, 39, 15, 27, 18, 26}.
Conversely, from the above list one can easily determine the previous one,
«.g., to the description abA corresponds the set U(a)nU((B)NU(4), and so on.
The method based on storing the second list in the memory of a computer
is known as the method of inverted files. The first list is the basis for the method
to be described in this paper (see Section 8). Notice that in the method of inverted
files each object is stored as many times as there are attributes, in our case 3 times,
whereas in the first list each object occurs exactly once.
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A user may submit to the system queries of the type “men of age less than 25”,
“women of clerical profession or with no profession”, etc. The responses for these
queries are the following sets of objects: {4, 17,28, 46,10, 30,42} and {2,6,9,
23,34,35,49, 5, 14, 36, 47, 18, 26}, respectively. An example of another type
of query is “do all men of age less than 25 have a profession?”. The response is
then “no”. All these queries will be formulated in a special formal language to be
described in the next few sections.

2. Syntax and axiomatization

In this section we shall define the syntax of a formal language set up to describe
certain sets of objects and to make assertions about information storage and re-
trieval (i.s.r.) systems.

Let A be a nonempty set. Its elements will be referred to as descriptors. With
each such set A4 we associate a formal language called the description language and
denoted by & ,4. :

DEFINITION 2.1 (dlphabet of the language & ;). The alphabet of & 4 consists of:

(i) all the descriptors from A taken as constants of the language, )

(i) constants T, F,

(i) symbols for Boolean operations ~, +, *, =,

(iv) symbol for equality =,

(v) logical constants |/, ] (truth and falsity),

(vi) logical connectives ], Vv, A, =.

Notice that our language does not contain variables.

DErINITION 2.2 (Terms of the language % ,). The set I of terms of %, is the
least set 7 satisfying the following two conditions:

() aeJ’ for each aed, TeT', Fe T,

(i) if t,s€J" then ~ t,t+s, t'5, t>s5€T".

‘Parentheses are used, if necessary, in the obvious way. As will turn out later,
the order of a sum or product is immaterial, and so we shall abbreviate finite sums
and products as ; t; and gti, respectively. Intentionally, terms are names of

certain features of objects, more “complex” than those expressed by descriptors.
" DEFINITION 2.3 (Formulas of the language ¥ ,). The set & of formulas of &,
is the least set #' satisfying the following two conditions:
0|/ eF, NeF' ift,seT then t =seF',
(i) if @, ¥ eF' then 7D, OVY, DAY, D=V eF'
As in the case of terms, we insert parentheses if necessary, and we abbreviate
finite disjunctions and conjunctions to k:{( @, and k/E\K @, , respectively. Formulas of

a

the forms |/, /), t = s are called atomic. We shall always use the letters ¢, s (possibly
with indices) to denote terms, and the letters @, ¥ (possibly with indices) to denote
formulas.
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Now we are going to define a set of formulas of the language &, which will
serve as the set of axioms for the theory of i.s.r. systems. In order to do this we
assume that there are descriptors of “different kinds” in 4. More exactly, there is
a set I of attributes, and to each attribute i € I there corresponds a finite nonempty
set 4; < A, in such a way that U A= Aand, foralli,jel,i#j = Aind;=0.

Ifae A,, then we say that a is a descriptor of atiribute i. This descriptor may then

be conceived of as a possible value of attribute i. Instead of speaking about the

partition {4;},, we may consider the equivalence relation Ry on A such that the
" family of its equivalence classes is indexed by the set I and A/Ry = {Ai} -

DEFINITION 2.4 (Axiomatization). We assume as axioms:

() Substitutions of the axioms of Boolean algebra (see Lyndon [18], p. 30)
for terms (including 7 — § = ~ ¢+s), and the axioms of equality (see Lyndon [18],
p. 58).

(ii) For each a e A the formula

a=~ 3 b.
i

(iii) Substitutions of the propositional calculus axioms (see e.g., Shoenfield
[25]) for formulas.

Note that the restriction imposed on Ry, namely that all its equlvalence classes
should be finite, is essential in (ii). In the case when some 4; is infinite the sum on
the right hand side of (i) may be undefined. We could overcome this obstacle by
allowing infinite sums operator into the language. This leads to_a parallel, more
general theory. However, we shall not pursue the matter here.

As an inference rule we take modus ponens (i.e. from @ and @ = ¥ we infer
¥). The resulting formalized system—consisting of the language %4, the set of
axioms and the inference rule—enables us to prove formulas. We write @ if @
is provable, i.e. if there exists a proof of @. We also denote by &/|—® the fact that
there exists a derivation from a set &/ of formulas as premises to the formula @ as
the conclusion (see Lyndon [18], p. 44). Usually we write y|— @ instead of {p}—®.
The following theorem often enables us to simplify proofs.

THEOREM 2.5 (Deduction theorem). AU {¥P}— iff AV = D.

Proof . If of |~ ¥ => & then, since we have modus ponens as the rule of inference,
U {p}—P. Assume that LU {p}—~P and-let Do, Dy, ..., P, =P be a deri-
vation of @ from U {¥}. Using the propositional calculus theorems

Y=,
D, = (¥ =),
F = (@;= D))= (F=D)=> (¥ =D)),

one can easily prove, by induction on i, that for each i, o |- ¥ = @,. For details
the reader is referred to Lyndon [18), p. 50. m
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3. Semantics, interpretation of terms and formulas

We shall now define an interpretation of the language #,. This interpretation
assigns a subset of a fixed set to each term, and a truth value, truth or falsity, to
each formula.
DEFINITION 3.1 (Basic definition). An information storage and retrieval system
(an i.s.r. system for short) is a quadruple
F ={(X,A,R;, U)
where
(i) X is a set called the set of objects,
(ii) A is a nonempty set of descriptors and R; is an equlvalence on 4 as de-
scribed in Section 2.
(iii) U: 4 > 2 (X) is a function satisfying the following two conditions:
(1) If aR;b and a # b then U(@nU(h) = O
@ U {U®): bRa} = X, for each a € A.
Note that conditions (1) and (2) can be expressed equivalently by one condition,
namely

for each ae 4.

Ua) = XN\ U {U®): aRybra # b}
The interpretation of terms will now be defined as a natural extension of the
function U.
DEFINITION 3.2 (Valuatzon of terms).Let & = (X, 4, Ry, U) be an i.s.r. system.
The valye of a term t in &, denoted by ||#]ls, is defined inductively as follows:
- (i) |laller = Ula) for each g€ A,

@ Tl = X,

(i) 11Flly = 2

@) ll~ tlly = X\Jltlls,
@ lit+slly = lllloUlislle,
@) it slly = lllgnllslle,

(vii) 1]z > slle = @\Izlls)vllsl]e.

'Thus terms, as we promised, serve as descriptions of sets of objects.

Unlike the terms, formulas will take as values the. truth values |/ (truth) and
A (falsity).

DEFINITION 3.3 (Valuation of formulas). Assume that the values of the terms
are already defined. We define inductively the value of a formula @ in &, denoted
by ||D||s, as follows:

O e =1, e = A

o e = I e = lslle,
@ fit = slle = {/] otherwise;

_l it 19l = A,
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. _ it 10lle =/ or Plle =/,
@) l|@ v ¥lle = {/] otherwise;

_l7 it 19lle = |/ and [Plle =1/,
e, =7 T 12 |
: _ if ||®llg = ot |[Plle =\
WD = Fls = { /1 otherwise.

If ||®||s» = |/ then we also write & |= P and say that @ is true in & (other-
wise we write & non |= @ and say that @ is false in &#).

Sometimes, when & is clear from the context, we write simply ||¢||, [|®|| in-
stead of ||t}ls, ||l

THEOREM 3.4 (Adequacy of axiomatization). If @ is an axiom (see Def. 2.4),
then 1Bl = |/

Proof. Our valuation was defined in such a way as to make the axioms of groups
(i) and (iii) true. The axioms of group (ii) are also true, by the remark after
Definition 3.1. =

DeriNiTION 3.5 Let & = (X, 4, R;, U) be an i.s.r. system and let x e X.

(a) The information on x in & is a function f;: I — A such that for all iel
fi(i) e A; and x e U(f.()).

(b) The description of x in & is the term ¢, = I_; J(.

. ie;

It is easy to see that f; is uniquely defined. Moreover, if we know f; for all

x € X then we can reconstruct the function U by the formula
Ua) =

In the definition of description we must assume that [ is finite, since we do not
allow termis of infinite length in our language. This definition is correct since we
identify products with factors occurring in a different order.

DEFINITION 3.6. An i.s.r. system & is selective if for each x € X, ||t |l = {x}.

Thus a selective system is one in which different objects have always dlﬂ'erent
descriptions, i.e. are distinguishable in our language.

{x: f(i) = a for the unique i €7 such that a € 4;}.

4. Normal forms for terms and formulas

Normal form theorems which we are now going to prove play an important role
in the theory of i.s.r. systems. On the one hand, they are the main tool for proving
completeness results in the next section, on the other hand they have deep im-
plementational consequences (see Section 8).

It will be convenient to use the following notatlon a' =a, a° = ~a for
each a € 4, similarly @' denotes @ and @° denotes ] . We also assume that if
J = @ then ; t; and ,IJ t; denote F and 7, respectively. From now on we consider

) only the case when the set of attributes 7 is finite.
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DEFINITION 4.1. (2) A term ¢ is primitive if ¢ = I1 a3 where each ¢ is 1 or 0.
Jjel
(b) A term ¢ is in normal additive form if t = Z t; where each ¢ is primitive.
jer

(c) A term is positive if ~], — do not occur in it.
(d) A term is simple if it is of the form [1a; where a; € 4; for all iel We
iel

denote the set of all simple terms by J.
(e) A term ¢t is of standard form if t = Z t; where each #; is simple and all

t;’s are different.
Notice that each description (see Def. 3.5(b)) is a simple term.

THEOREM 4.2 (Normal forms for terms). (a) For edch term t there is a term s
in normal additive form such that |- t = s.

(b) For each term t there is a positive term s in normal additive form such thar
t=ys

(c) For each term t there is a term s in standard form such that —t = 5.

Proof. (2) The reasoning used in this case is a standard one. Only the axioms.
of group (i) are needed here. The reader is referred to any standard textbook on
Boolean algebras.

(b) By () we may assume that # is already in normal additive form. From
each axiom of group (ii) one can easily obtain |— ~ a = Z b. Substituting the

bRra

b#a
right-hand side in every place where the left-hand side occurs, we eliminate ne-
gation from 7. A repeated application of the distributive law completes. the proof.

(c) By (b) it is clear that we may assume that ¢ is a positive primitive term.
If two different a, b € 4; occur in ¢ for some i €I, we have |-t = F, since then
one can derive a- b = F from the axiom a = ~ . b. Therefore we may assume

bRra
bsa
that at most one @ € 4; occurs in ¢ for each i € I. By adding a to both sides of ~ a
w= Z b, we obtain | 2 b = T. Letielbe an attribute such that no b € 4; occurs.
bFra bR1a
bsta
int. Using |-t =1t T, weget -t=t¢- 2 b and, by the distributive law, | ¢
. bed;
= > t+b. Thus we have diminished by one the number of attributes which were
bed;
not represented in f. A repeated application of the above procedure completes.
the proof. m

Notice that the finitness of 7 was essential only in (c). It is clear that there
are exactly N = [] |4;| different simple terms (recall that |4,| is the cardinality

iel

of 4,) and consequently 2V different terms in standard form.

DEFINITION 4.3. (2) A formula is elementary if it has the form ¢ = F where ¢
is a simple term.
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(b) A formula is primitive if it has the formj/\J &% where each @; is elementary
€,

and ¢ is 1 or 0.

(c) A formula is in normal disjunctive form if it is of the form Yr ¥, where each
JE

W, is primitive.
(d) A formula is positive if 7], = do not occur in it.

(e) A formula @ is basic if it is of the form- A’ @f+ where each & is 1 or 0, each
keK

@, is elementary and all the N elementary formulas occur in @, each one exactly
.once.

() A formula is in standard form if it has the form V ¥, where each ¥} is basic
leL

and all ¥, ’s are different.

We assume that if J = & then V &; and /\ ®; denote | and |/, respectively.
jeJ

D and ¥ are said to be provably equivalent 1ff [~ & <> ¥ where @ <« ¥ abbreviates
D=>VYAY =D,

THEOREM 4.4. (a) For each atomic formula t = s there is a provably equivalent
_positive primitive formula. :

(b) For each formula @ there is a provably equivalent formula ¥ in normal
disjunctive form.

(c) For each formula @ there is a provably equivalent formula ¥ in standard
form.

Proof. (a) By Theorem 4.2(c) we may transform ¢ and s to standard form.
Let a simple term #, occur in either ¢ or s but not in both. Multiplying both sides
of t=ys by t, we obtain |- s = t = t, = F. Moreover, we can easily prove: s =t
<>t = FAt, = FA ... Aty = Fwhere t,, t,, ..., t are all simple terms occurring
in ¢ or s but not in both (it is convenient to make use of the Deduction Theorem
here).

(b) By (2) we may replace in & each equality of terms by a positive primitive
formula. Then, using the propositional calculus axioms (which are essentially the
same as those of Boolean algebra), we apply the standard procedure similar to
that used in the proof of Theorem 4.2(a).

(c) By (b) it is clear that we may assume that @ is a primitive formula. Now
we apply a procedure similar to that used in the proof of Theorem 4.2(c)—instead

of - > b= Twe exploit | t = Fvi # F<|/(t # F abbreviates 7|(¢ = 5)). ®

bRra
Also the form A V El”ﬂ dual to the standard form can be obtained (we take

JeJ leL
‘the standard form of ~] @ and then we negate it using De Morgan’s Laws).
It is clear that there are exactly N = [ |4;| elementary formulas, 2 basic
el

N .
‘formulas and 22" formulas in standard form. Notice that the elementary formulas
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are elementary pieces of information about an i.s.r. system. By Theorem 4.4 every
assertion about an i.s.r. system expressible in the language %4 can be built up from
elementary formulas By means of logical connectives.

5. Completeness properties

Let o be a set of formulas and let @ be a formula. We shall write &/ =@ to denote
the fact that of semantically implies @, that is, for all i.s.r. systems & such that
each ¥ e o is true in &, ||D]le = |/

From Theorem 3.4 and the fact that ||D||s» = |/ and ||P = W|| = |/ implies
[|¥]le = |/, we obtain the following

THEOREM 5.1 (Adequacy of inference). If |— @ then for-all isx. systems &,
|19ll$ = |/. More generally, if & \— D then & = P. m

Obviously, we assume here (and in the rest of this section) that the language
Z 4 and the axiom system are fixed, and so the phrase “for all is.r. systems” refers
to all is.r. systems with fixed 4 and R;. '

Consider a fixed i.s.r. system &. Using our rule of inference, we may generate
from our axioms certain formulas which, by Theorems 3.4 and 5.1, are true in &.
Clearly, not every formula which is true in & can be obtained in this way. If it
were so, then each formula would be either true in each i.s.r. system or false in all
is.r. systems. Nevertheless we shall soon prove that the set of formulas obtained
in this way is the “maximal possible” in the sense that the converse of Theorem 5.1
holds. Thus no “better axiomatization” of our theory is possible.

Let us notice that each set of formulas & is equivalent to a single formula @,
in the sense that o |~ @ and for every ¥ € o7, @ |~ ¥. Indeed, we can transform
each ¥ e o/ into the standard form, then delete all repeating formulas and take
the conjunction of the remaining finite number of formulas (notice that if & = @
then we obtain |/ as D). '

We say that a set of formulas & is deductively consistent if & non — /).

THEOREM 5.2 (Consistency theorem). If a set of formulas of is deductively con-
sistent then there exists an i.s.r. system & such that for all Ve o, ||Vl = |/.

Proof. It is clear that we may replace &/ by the equivalent single formula @
in the standard form. @ is not /|, since that would contradict the consistency of
/. Thus @ contains at least one basic formula @,, say /\ t# F)a /\ (s=F)

(THOT~ = Ty, T+AT - = @). To prove the theorem 1t is sufficient to construct
anis.r. system & such that [|D,]|s = |/. To this end let us take the Cartesian product

PA,- and its subset X = {feP 4;: Hf(z)e.?‘*} Now define a function U:
A - Q”(X) as follows: m '

U@ = {feX: f(z) = a for the unique i such that a € 4; }
Then & = {X, A, Ry, U) is the required i.s.r. system. m

15 Banach t. IT
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From the above construction it is clear that for every basic formula @ (or
equivalently for every subset 7+ < ) there is 2 selectivs i.8.I. _system S such
that ||P|lee, = |/ (o1 equivalently for each 7 € 7o, |ltll#y ;é g iff teTt). We
shall see later that the most important among these systems 1§ & max—the system
in which all simple terms have nonempty values (i.e. T+ = T,). Conversely, it is
easy to see that to every system & there corresponds a unique basic formula @
such that ||Pglls =]/ (we simply take T+ = {te T lltilsy # @}). Moreover,
the single formula @z provides a complete description of &#:

TuEOREM 5.3. For every formula ¥ and isr. system &

Pl =" f Pr-¥.

Proof. Suppose ||¥]|s = |/. We may assume that ¥ is in the standard form.
Since P is the only basic formula true in &, it must occur in ¥, Hence |- Py =¥
and, by modus ponens, Dy [~ P. Conversely, if Ps |— ¥ then by the fact that
||®slls = | and by the adequacy of inference, Plle=/m

THEOREM 5.4 (Completeness theorem). Let o be a set of formulas and let ¥
be a formula. If of =¥ then o - ¥

Proof- We may assume that & consists of a single formula @, and that both
¥ and @ are in standard form. Suppose that & non |— ¥. Then there must be a
basic formula @, occurring in @ but not in ¥ (otherwise ¥ could be written as
®vP,, and then trivially @ |- P). But consider the system &¥o,. We have HQ“‘VQD
=|/and |]!l/|]y% = ), which contradicts the assumptions of our theorem. Thus
- u

In particular, for & = @, we get the following 5

COROLLARY 5.5. If, for all isr. systems &, ||®lls = |/ then |- D. w

Let us introduce the following relations:

txs iff -t=s,

t< s iff —ts=t,
t~gs A jtlle = lIslle,
t<ys it |Jtlle < lslle.

From the completeness theorem we can easily deduce that ¢ ~ s iff for every
system &, t @ 5. In other words, ® = () &y (® and ~y are binary relations
&

on 7, ie =, ¢ S I xI). Similary, ¢ < s iff for every system &, t <&
Corollary 5.5 also implies that the formulas @ and ¥ are provably equivalent
iff in each i.s.r. system &, ||®]|s = [[¥]}s (from now on we shall say simply “equiv-
alent” instead of “provably equivalent”).
If @ is (equivalent to) a positive formula, then it is particularly easy to check
whether | @. )

THEOREM 5.6. If @ is a positive formula then the following three conditions are

equivalent:
® - o

icm
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(ii) For all isx. systems &, (||l = |/

(i) 1|Dllma = |-

Proof. (i) <> (ii) is just Corollary 5.5, (ii) = (iii) is trivial. .

(iif) = (). Let @ be an atomic formula ¢ = 5. By Theorem 4.4(a), ® is equiv- -
alent to a positive primitive formulajg}"tj = F. But the last formula is true in & pax

only when J = . Hence if ||t = sllymax = |/ then |~ ¢ = 5. The easy extension

to arbitrary positive formulas is left to the reader. m

It is easy to see that different terms in the standard form always have different
values in & ... Thus the standard form of each term is unique (up to the order
of simple terms and the order of descriptors within each simple term). Similarly
from the Consistency Theorem it follows that the standard form of each formula
is unique.

We say that & is equivalent to &’ (in symbols & = &) iff for every @, ||D||»
= ||®]|s. It is easy to see that & = &' iff the basic formulas @ and P4 coincide.
Obviously, = is an equivalence relation. There is a one-one correspondence be-
tween its equivalence classes and all basic formulas. Moreover, by Theorem 5.3
each such class can be given a complete axiomatization by adding the basic formula
corresponding to it to our axioms listed in Definition 2.4. Since there are 2¥ dif-
ferent basic formulas, there are also 2N classes of equivalent systems (recall that

N =TT 4. For each system & there is an equivalent selective system &’ (we
el

can take g, as &'). Notice that the standard form of a formula determines ex-
plicitly all the (equivalence classes of) i.s.r. systems in which it is true.

We now come to the problem of limitations of the expressive power of our
language % 4. In any particular i.s.r. system it is impossible to distinguish, by means
of #,, any two objects with the same description. Also we are not able to express
the cardinality of the value of a term, though we can state that this value is empty
(or nonempty, or coincides with the whole set of objects). These are the limitations
of the first level of #, (terms). Similarly, we cannot distinguish in %, any two
equivalent systems, and this is the limitation of the second level of %, (formulas).

Our theory is decidable (see Lyndon [18], p. 21). The decision procedure to
find out whether |~ @ consists in transforming @ into the standard form and check-
ing whether all the 2" basic formulas occur in it. One can even introduce a Gentzen-
style mechanized proof finding procedure (by a modification of a Hao-Wang al-
gorithm). This will be, however, the subject of a separate publication.

Finally, let us observe that all the completeness results of this section could
be proved by standard methods (cf. Lyndon [18]) usually adopted in proving anal-
ogous results for the predicate calculus (notice that each model for our axioms
is a special kind of Boolean algebra which is, by Stone’s representation theorem,
isomorphic to an i.s.r. system). But the methods used here are more constructive
and give a better insight into our theory. Moreover, they provide many implemen-
tational suggestions. '

- |5%
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6. Algebraic properties of is.r. systems

DEFINITION 6.1, An is.r. system &; =<Y, B, Ry, U, is a subsystem of &
= (X, A, Ry, Uy (in symbols &1 = &) iff .
(i) YeX,

(i) B < 4,

(iii) Ry = Ry n(Bx B),

(iv) Ui(@) = U@nY for each aeB.

Notice that &, is uniquely determined by ¥ and B. If B = A then each term
of &j is, in particular, a term of %,. The adequacy of our definition is shown by

the following
Levva 62. Let 1 = <Y, B, Ry, U, & =<(X, 4, R, U} andlet ¥, < &.
Then for each term t of the language &y,

£, = l2llenY.

e

Proof. By the induction on the complexity of #. If t is a single descriptor a then
the desired equality is nothing else but (iv) in Definition 6.1. If t is T or F then the
condition is seen immediately. Assume now that ¢ is ~ s. Then

Ntller, = NI~ slle, = Y\JIslle, = Y\ (lsllenY)
= XnT\(lsll#n¥) = A\]Isll#)nY = ||~ sllgnY = [ItllgnY.

If t = 5,5, then we have
Helle, = lIse* saller, = llsalle,NlIsaller, = llsillenYnllsalleny
= IsillenllslienY = {Is1 - s:llgnY = |l#]|l=nY.

The cases of the operations +, — are similar.
We get two important cases in Definition 6.1 assuming that B = AorY=X

We then write & _é_ & or &, c &, respectively. If &; = & then we write also
* *
&, = #|y and we say that &, is the restriction of & to Y. The following “interpola-

*
tion property” holds: if &, = & then there exist &', & such that SeF s
*

* . .
and ¥, c &' = &. Moreover, &' and &' are unique. It is easy to see that for
*
each system & constructed in the preceding section ¥s & & max-
*

DEFINITION 6.3. Let {&;};e; be a family of i.s.r. systems with the same set of
objects (¥ = (X, 4, R,!, Up), and suppose moreover that, for all i,jeJ,

i#j= And =@rIn]; = 0.
- We define the direct sum of {&;};er as follows:

® @9’, =><X:A5Rls U
JeJ

icm®
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where
A=U4, I=JL R=UR, U=UU.
jeJ jel JeJ J JjeJ

For instance, if we take & = (X, 4, R;, U) and, for each iel, ¥;
¥
=<{X,4;, AixA4;, U] 4 then ¥, < & and & = D .
el

Now we shall describe a hierarchical construction. Of two equivalence relations
S, R on a set 4 we say that S is finer than R (in symbols S < R) if § = R. We denote
the family of the equivalence classes of .S by 4/S and the equivalence class of an
element a € 4 by a/S.

DerFINITION 6.4. Let S be an equivalence on 4, S < Ry, and let &
= (X, d, Ry, U) be an i.s.r. system. We define the quotient system & [ as follows:
KIS =X, A/S, R[S, US>

where
@) R;/S is an equivalence on A/S defined (uniquely) by the formula
alS R;[S b/S < aR;b;

i) U/S: A]S — P(X) is defined as follows:

U/S(a/S) = | {U®): bSa}.

Roughly speaking, we “glue together” certain descriptors (namely those forming
the equivalence classes of S) to get descriptors expressing “more general” features.
Thus the expressive power of the language £ s is less than that of &Z,.

DEFINITION 6.5 (Hierarchical construction). Let & = <X, A, Ry, U) be an i.s.r.

system and let S; < S, < ... <8, < Ry be an increasing sequence of equivalence
relations on 4. We define &5, .5, as follows:

-9751”,5" = y@(i_@l y/S,).

We left to the reader the proof of the following
THEOREM 6.6. For edch a € 4 we have
la/Sivs = % b/Siles,.s, =1/ m
b[St S1+1/S1 a/S;

The hierarchical construction is used when our system is “too fine”. If our
system is “too crude” we can perform, in a sense, an inverse construction. Roughly
speaking, for each a € A we take a partition {X;,X,, ..., X;} of the set U(a), we
add to our language constants ay, a,, ..., 4 and put U(g;) = X;. For the details the
reader is referred to Marek and Pawlak [21].

7. Describable sets

DrerINITION 7.1. Let & = <X, A, Ry, U) be an i.sr. system and let ¥ < X,
Y is describable in & if there is a term ¢ such that ||¢||s» = ¥. We denote the family
of all subsets of X describable in & by B(¥).
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1t can easily be checked that the describable sets form a Boolean algebra. We
shall need some auxiliary notions connected with families of sets.

DeprNITION 7.2. (Cf. Kuratowski and Mostowski [10], p. 20.) Let M = {M,,
My, My} = @ (X) and let &y, 65, .oy & € {0, 1},

Sets of the form

Sw(ers 25 -v» &) = MPENMPN ... M,
where
M= M i'f e=1,
XNM if e=0,

are called the components of the family .

Lemma 7.3 (see Kuratowski and Mostowski [10]).

(@) Dzﬁ’erent components are disjoint.

(b) The union of all components of a family M e 2(X) is X.

() Each set Y < X obtained from sets of a family M < #(X) by means of
Boolean operations is the disjoint union of a certain number of components of M. w

By the components in an isx. system & = (X, 4, R, U) are meant the com-
ponents of the family M = {U(@): a e 4} =2 (X).

Condition (iii) in Definition 3.1 (or the axioms of group (i) in Definition 2.4)
implies that the components of {U(@): a € 4} can be obtained in a much simpler
way than in the general case, namely as the values of simple terms. Indeed, let 4
= {a,,a,, ..., a,} and let us take

San(ers €25 «vs &) = Ula)inUla)2n ... nU(@)™.

Using the above-mentioned conditions we can easily deduce that this com-
ponent can be nonempty only if the following condition is satisfied: for each i el
there i$ exactly one descriptor 4;, € 4; such that ¢, =1 (ie. U(a; )" = U(ay))-
But then our component is the value of the simple term ]—; a;,. Notice that this

i€.

implies that only [I—II n; components can be nonempty, though there are many more,
€. N .

namely
Dt
L - 2ieI = H o,
el

distinct sequences ,, &, , ..., &. Now it is clear that coding the components by these
sequences (in other words, using the components written as Swm(£1, &2, +-+s &)
would be utterly uneconomical. A much better coding method will be described
in the next section.

THEOREM 7.4. Let & = (X, 4, R;, U) be an is.r. system.

(a) Different components in & are disjoint.

(b) The union of all components in & is X.

(c) Each set Y < X describable in & is the disjoint union of all components in
& contained in Y.

icm
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We shall prove (c). Y = ||¢||& for some 7, hence
Y= tlle = Ulglls
Jer &
where ). #; is the standard form of t. ®
JjeJ

It is easy to see that the Boolean algebra B(¥) is a subalgebra of 2(X) generated

‘by {U(a): ae A} and that components in & are its atoms (i.e., minimal elements

in BE)\{O}.

THEOREM 7.5. A system & = (X, A, Ry, Uy is selective iff B(S) = P(X) (recall
that we consider only the case where I, and consequently 4, are finite).

Proof. If B(F) = P(X) then obviously & is selective. If & is selective then
all x e X have different descriptions, and hence X is finite. For any ¥ < X we thus

have ¥ = || 3. t,||#, i-e, ¥ is describable. m
yeYy

Notice that for infinite I (but a finitary language %) it is easy to comstruct
a selective system with an (infinite) indescribable set (by the cardinality argument).
THEOREM 7.6. Let ¥ < X be indescribable in & = {X, A, Ry, U>. Then there is

a system &' = (X, A', Ry, U’ such that & é & and Y e B(S").

Proof. We give the names a, &’ to Y and X'\Y, respectively, take 4" = 4u
w{a, a'} and extend Uto 4’ by putting U’(a) = Y and U'(@) = X \Y. Ry is defined
in the natural way (I' = Iu{i} where the attribute i corresponds to the new de-
scriptors). ®

It is clear that by the repeated application of the above procedure we may
construct, for any system & (with'a finite set of. objects), a selective system &’

such that & ; &', If the set of objects is infinite, we need an infinite number of
“new” attributes. .

. Notice that if &, € &, say &; = |y, then each component in &, is the
intersection of the corresponding component in & with Y. Thus, in general, fewer

*
components are nonempty in &; than in &. If &; = & then each component in
&, is the disjoint union of a certain number of components in &. It is similarly
when &, = &[S (see Def. 5.4).

8. Implementation: general remarks

We now pass to implementational questions, more precisely to problems connected
with the organization of the memory of a computer in which the objects of an
i.s.r. system are stored. *

Normal form theorems suggest the following implementational proposal: Objects
belonging to the same component should be stored “together” in adjacent storage
locations (this will be given a more precise meaning in the next section). Then each
query entering the system can be transformed, by purely syntactical means, into
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the standard form. The response of the system is then the disjoint union of the
components indicated explicitly by this standard form.

Similarly, each query in the form of an assertion about our system can be
transformed into an equivalent form built up from elementary formulas, each
stating that a certain component is empty, by means of logical connectives. To
determine the value (true or falsity) of the query we need not retrieve the components

occurring in the transformed query, we only have to know, for each particular com- -

ponent, whether it is empty or not. Notice that here the standard form is not necess-
arily the best one. Rather, these are forms minimizing the number of occurrences
of elementary formulas that are desirable.

When we implement an is.r. system using the method described above, it is
necessary to enumerate the components. For each i € [, let |4| = n;. We may index
the attributes, and the descriptors within each attribute, by nonnegative integers.
Thus we may assume that 7 = {1,2, ..., k} and each component may be identified
by a sequence <{by,b,, ..., b where 0 < b <m, for i= 1,2, ..., k. Now we
shall present a simple method of coding each such sequence by a single number a,
0La<n*ny: .. nm=N.

We may assume that for each iel, m # 1 since otherwise the sequence

{by, by, ..., by would always have O at the ith position.
We define
Uy =Ny Nz ... My,
Uy =Nz N4 ...* Ny,
U = M1 Niga® My
Ug—y = Ny,
w, = 1.

Now we define our coding function ¢: C — {0,1, ..., N—1} where
C? {<by, bay ...s by (YieD) 0< by < m},
by the formula ‘

k
@by, by, .., By) = Zlbz'ui.
=

Notice that the above formula strongly resembles the formula for the relative
address of the element A[b,,b,, ..., by] of a k-dimensional array declared in

ALGOL 60 as
A[0: ny—1,0: ny—1, ...,0: m—1].

It can easily be proved that ¢ is a bijection and that for each a, 0 < @ < N,

7@ = by, by, oy By

icm
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where

b, = entier (—a~),
u

1

. a—by-u
b, = entler( L ),
2
i—1
a— ) by \
b, = entier =1
Ui

The formulas above provide an iterative procedure for obtaining the sequence
{by, ..., byy from its code.

It is easy to see that the linear ordering < defined by

Cbyy by oy b S By, By oy by M @(Brsbay o ) S @by, by, ..., B)
is the lexicographic ordering, i.e. {by, b, ..., by < by, bz .o, by if for some i,
by = b, by =by,..,biy = bj_q, by < by or {b1,bsy > = N 5

Notice that the method of coding described above is especially convenient
when we increase the number of attributes.

Other methods of coding are also possible. For instance, we may replace each
“weight” ' by a #j =2% such that u; < ). Then the binary representation of
@(by, by, ..., by) is the concatenation of the binary representations of all b;’s. Thus,
in using this method it is sufficient to know where “to slice” the code of {by, b2, ...
..., b,> to obtain the binary representations of the numbers by, ba, ..., by

9. f-graphs and admissible families of sets

In the preceding section we pointed out that objects belonging to the same com-
ponent should be stored in “adjacent storage locations”. Now we are going to make
this statement more precise and to show how a suitable ordering of the components
can make our organization more efficient.

Let us suppose that our storage consists of a set L of storage locations, and
that in each storage location one object can be stored. In order to speak about
“adjacent storage locations” we need an additional structure on L. We take as
this structure a partial function W: L — L interpreted as follows: W(I) is the storage
location inspected immediately after . Thus W reflects our retrieval method, which
is, in turn, often determined by the physical structure of the storage media. However,
sometimes it may be determined by software means. For instance, in the case of
random-access memory, we can use chaining techniques: in each storage location
! we store (apart from an object) a pointer indicating the storage location to be
inspected immediately after L

We say that the storage locations belonging to a set K < L are adjacent if they
form a segment, i.e. if there is an /€L such that

K= {l’ W(l), vy WIKI—J(I)}
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(where WO() = I, W™(l) = W(Wi())).
Assume now that the objects of an i.s.r. system & = (X, 4, Ry, U) are stored
in the memory according to a function @: L — X (p(J) is the object stored in the
onto

storage location I).

First we shall consider the case where ¢ is one-one, and then (in Section 15)
we shall apply the theory developed for this particular case to the general case. In
the first case it is convenient to identify each storage location with the. object stored
in it (and consequerftly W with S = pWe™).

Usually there is a class of singled out terms ## < Z which are for some reasons
important (e.g., there is a simple method for obtaining from their values the value
of any other term—as it is in the case where J# = 7, the class of all simple
terms). We are then interested in a file organization, i.e., in an arrangement of the
objects in storage locations satisfying the following two conditions:

(i) There is no redundant storage of objects, each object is stored exactly once.

(i) The value of each singled out term is a set consisting of objects stored
in adjacent storage locations.

Such an organization enables us to retrieve the values of the singled out terms
in a particularly easy way. Since the value of each singled out term forms a segment,
we need only to know the locations of the first and the last objects of this segment.
To each family of terms 5 there corresponds a family of subsets of X, Mt = {l1#1ls:
te#}. Thus the problem of finding a file organization satisfying (i) and (ii) is
equivalent to the following abstract combinatorial problem:

For a given family M = 2 (X) construct a partial function S: X — X (if there
exists one) such that for each M € M there is an x e X such that M = {x, S(x), ...
ey SMIZ100, )

This problem and its modifications will be studied in the next few sections
Now we shall give some more formal definitions.

Let X be a set and let S = XXX be a partial function such that S(x) # x for
each x € 2. It is convenient to treat (X, S) as a directed graph with the set of
vertices X and the set of edges S. <X, 8 will be referred to as an J-graph on X (S is
a successor function, S(x) is the successor of x). A set B < X is a segment in (X, S
iff’ either B =@ or B = {x, S(x), ..., S"®~1(x)} for some x € X. Such an x is
a head of B and S®I~(x) is the end corresponding to this head. If, in addition,
S1Bi(x) = x then B is a cycle. A segment is proper if it contains no cycles, final if
B \9S§ +# O or B =, and initial if B\A&S # & or B = @. If a segment B # &
is not a cycle, then its unique head and end are denoted by h(B) and e(B), respectively.

An f-graph <(X,.S> is linear if X is a final segment in it (i.e., if it consists of
a single elementary path), cyclic if X is a cycle in it (i.e. if it consists of a single
elementary cycle), acyclic if there is no cycle in it (in this case each of its connected
components is ‘easily seen to be a rooted tree—see Harary [7] for graph-theoretical
notions used here). These types of f-graphs correspond to different types of storage,
e.g. magnetic tape (linear f-graphs), drums, disks (cyclic f-graphs), random-access
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memory organized by using chaining techniques (all the types of f-graphs including
the general one). We denote by #(X) the class of all f-graphs on X and by £# (X),
%F (X), L F(X) the subclasses of linear, cyclic and acyclic f-graphs, respectively-
Tt is convenient to call cyclic also all f-graphs <X, S) with |X] < 1 (then S = ©).

~
Aﬁk
(/e \o) )

Fig. 1. An example of a non-admissible family and its admissible subfamily

N

We say that a family I is segmental (finally segmental) over (X, S) if all
M e M are segments (final segments) in <X, $». Our basic problem is that of the
existence and construction, for a given family M, of an f-graph <X, S) such that
I is segmentatl over it. If Pt admits such an f-graph then it is called admissible.

Exampie 9.1. Let X = {1,2,3,4}, M = {{1,2}, {1, 3}, {1,4}, {2,3,4}}-
It is easy to see that 9 is not admissible and that each of its proper subfamilies,
e.g. MN{{1, 4}}, is admissible (see Fig. 1).

We may impose restrictions, in the definition of an admissible family, both
on the type of the f-graph and on the type of segmentality. We then obtain different
classes of families instead of the class of admissible families. These classes will be
referred to as classes of admissibility.

DEFINITION 9.2, Let & < #(X) be a class of f-graphs (e.g. F(X), L#(X),
EF (X) or A F (X)), and let Z# < P(X)x F(X) be a relation, e.g. one of the re-
lations &, &* defined as follows:

(M,G)e <« M is a segment in G,
{M,Gye¥* < M is a final segment in G.
We define a class ¢(€, &) of families of subsets of X as follows:

Mec(@, R« @AGe&) (VMM {(M,Ge .

The following classes of admissibility will play an important role in further
considerations:

Adm(X) = c(.?’ X), 5’) — the class of admissible families,
LX) =(LFX),¥) — the class of linear families,
FHX) = (L F(X),¥*) — the class of finally linear families,
EX) = (¢F (X),¥) — the class of cyclic families,
AX) = (AF(X),&) — the class of acyclic families,

A*(X) = (AF(X),#*) — the class of finally acyclic families.
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We say that (X, Sy realizes the admissibility (linearity, etc.) of M if <X, S
is an f-graph (linear f-graph, etc.) such that M is segmental over it.

Let us observe that the class £(X) is related to the so-called (0, 1)-matrices
with the consecutive 1’s property (see Fulkerson and Gross [3]). With every family
M= {My, M, ..., M} = P({x1, %2, ..., Xn}) We may associate a (0, 1)-matrix
A = [ay] with m rows and = columns, called its incidence matrix and defined as

x; € M;,

follows:
1 if
=0 if x¢ M,

The matrix A is said to have the consecutive 1’s property if there exists a per-
mutation of its rows such that the permuted matrix has consecutive 1’s in each
«column (see an example in Fig. 7 and Fig. 8, Section 13). It is easy to see that M e
€ Z(X) iff the incidence matrix of 3 has the consecutive 1’s property.

There are some simple relations between different classes of admissibility:

Lemma 9.3. () &/dm(X) contains each of the other classes of admissibility.

(b) LX) € €¢(X)nt(X); the equality, in general, does not hold.

© L*@) = {Mc PX): VM, NeM)M = NVN = M} Te, LX) con-
tains exdctly the families which are linearly ordered by inclusion (nested).

Proof. We prove (b). £(X)  «(X) since each linear f-graph is acyclic. Z(X)
< %(X) since we may always add the edge {e(X), k(X)) to an f-graph (X, S) realiz-
ing the linearity of 0 , obtaining an f-graph realizing the cyclicity of . An example
{due to M. Wasowska) of a family which is cyclic and acyclic but not linear is
shown in Fig. 2.

Fig. 2. An example of a family M & (#(X)n LX)\ LXX = (1, 2, 3, 4, 5}, M = {{1, 2, 3},
{1, 3, 4,5}, {1, 5}, {3, 4}})

DEFINITION 9.4. (2) Let M < 2(X) and let C = X. The trace of M on C (in
symbols M|c) is a family of subsets of C defined as follows:

Mie = {(MnC: MeD}.

(b) Let <X, S) be an f-graph and let C = X. The contraction of (X, S to C
{in symbols (X, S)|c) is an f-graph on C defined as follows:

X, $Hle =<C, Se,
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2S¢ = {yeC: 3k > 0)S*(y) e CAS* () # y},
Se(x) = S*(x)  for each x € 9S¢, where k, = min{k: k> 0AS*(x) e C}.

Roughly speaking, we take as S¢(x) the first vertex belonging to C (different
from x) encountered on the path beginning at x. The operations of trace and con-
traction are used to describe the situation which arises when some objects are deleted
from an i.s.r. system. The adequacy of these operations for our purposes is con-
firmed by the following

THEOREM 9.5. Let <X, S realize the admissibility of a family M < P(X) and
let C = X. Then (X, SD|c realizes the admissibility of M|c. The same holds for the
classes ZL(X), €(X), #X), L*X), L*(X) taken instead of Adm(X).

Proof. It follows from the fact, which is easy to establish, that the contraction
changes neither the type of an f-graph nor the type of segmentality. m

Thus admissibility (linearity, etc.) of a family is a property inherited by its
traces on arbitrary sets. Using the operation of trace we can formulate the follow-
ing “local characterization” of finally acyclic families:

THEOREM 9.10. Let M < P(X). Then M e L£*(X) iff for each M e M, M|y
e Z*(M).

We leave the proof to the reader. m

10. Admissibility and components

In this section we shall show that the admissibility (linearity, etc.) of a family I
does not depend on the cardinalities of the components of 3, it only depends on
which components are nonempty. This observation enables us to restrict ourselves
to the families with each nonempty component consisting of one element.

DeriniTion 10.1. (a) Let M = {M,, M,, ..., M,} < #(X). We define, for
i=1,2,..,n

Z(M) = {61, €2y -v» &y € {0, 1)1 & = LA Sep(ey, €2, ..., &) # DY,
ZMY) = {Z(M), Z(M), .., Z(My)}-

(b) Two families, M = P(X) and N < P(Y), are isomorphic if there is a bi-

jection @: X — Y such that

(VM e M) p(M) e MA (VN e Mg~ (N) e M.

(c) Two families MM and N are similar if the families Z (W) and Z ) are
isomorphic.

Notice that Z(M;) can be treated as a set of rows of the incidence matrix of
9. It is easy to see that each nonempty component of & (IN) consists of one element
and that 9 and #(W) are similar (since Z(WM) = 2 (Z())).

THEOREM 10.2. Let the families M < P(X) and M < P(Y) be similar. Then

MeA(X) < NReA(Y)
where A" (X) is one of the classes ddm(X), £(X), B(X), LX), L*X), L*(X).
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Proof. The theorem is obvious if we replace similarity by isomorphism. Thus
it is sufficient to prove the theorem for : = Z(IM). To this end let us take a set
€ < X such that for each S e L), |CNS| = 1 (recall that (M) is the family
" of all nonempty components of M; see Def. 7.2). It is easy to see that M|¢ and
#(@R) are isomorphic. Thus, if M e # (X) then, by Theorem 9.5, Mc & A#°(C)
and consequently 2 (M) e o' (¥). Conversely, if Z(@W) e #(Y) then we apply the

following procedure to an f-graph realizing the admissibility (of class #"(Y)) of-

Z(IN): we replace its vertices by the corresponding components of I, as shown
in Fig. 3. m

N BN
o—S o |:> O_E s—O0—3—+-0
o ¢

Fig. 3. The procedure of “pushing up” vertices used in the proof of Theorem 10.2

Theorem 10.2 has one important consequence. Let us notice that if 2 () is
admissible (linear, cyclic or acyclic) then Z@YuF (Z@)) is in the same class
of admissibility, since each component of Z (M) consists of one element. But
AU (D)) = Z (WMus @), thus we have the following

TaeoREM 10.3. Let- H'(X) be one of the classes dm(X), £(X), €(X), d(X)
Then

MeA(X) e MusI et (X). m

In the case of #*(X) and &/*(X) we may only require that the components
be segments, not necessarily final. Usually we shall consider only the “regular”
f-graphs realizing the admissibility (linearity, etc.) of a family, i.., f-graphs in
which all the components are segments.

Admissibility of a family imposes severe restrictions on the number of its non-
empty components. An arbitrary family 9 can have 2" (z = |i[) nonempty com-
ponents, but we have the following theorem:

TueoreM 10.4. Let M < P(X) and let |M| = n.

(@ If MeL*X) then [PV <n+l.

®) F MegX) then [N <2

© I MebX)  then AN <2

@ IFMesd*X) then |P@W)] < 2.

(e f MeAd®X) then |F(IV|<3n-2, for n> 1.

© I M e Ldn(X) then
and @D <8 forn=3. m
All these bounds are reached by some families. For the proof the reader is
referred to [11]. Here we show only, as an example, an admissible family with

|# @) < 3n+1, for n> 3,
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Fig. 4. An admissible family with 3#+1 nonempty components

3n+ 1 nonempty components (see Fig. 4): X = {1,2, ...,3n+1}, M = {M,, M,, ...

., M} and for each i, |M;] = 6 and h(M;) = i; each component consists of one
element.

It should be emphasized that Theorem 10.4 gives only necessary conditions

for a family to be in certain classes of admissibility, these conditions not being
sufficient.

11. Families of three sets

In this section we study the admissibility of “small” families. In virtue of Theorem
10.2 we may assume that all the families I = #(X) under consideration satisfy
the following conditions:

(i) Bach component of M either consists of one element or is empty (for
other families we “push up” the components).

(ii) The set of nonempty components of Mt is the maximal possible for a class
of admissibility under consideration (for other families we obtain appropriate
f-graphs by contraction).

For convenience we assume also that | J M = X. For a given M = 2(X),
two f-graphs <X, S;> and (X, S,) are said to be essentially different if there is
no bijection ¢: X — X satisfying the following two conditions:

0) (vx, e X)($1(0) =y = S:(p(0) = ¢()),

(i) (YMeM)pM)e.

It is easy to see that each family consisting of two sets is linear and finally
acyclic. The case M = {M;, M,, M3} is less trivial.
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THEOREM 11.1. (See [171.) Each family I consisting of three sets is admissible
The unique four essentially different f-graphs realizing the admissibility of M are
depicted in Fig. 5. m

For other classes of admissibility we have the following theorems:

THEOREM 11.2. A family {M,, M,, M.} is acyclic iff
M AMnMs = GVM,AM,AM; = OV MAM,AM, = O

(M; denotes X\M)), i.e., iff one of the sets My, M,, M contains the intersection
of the other two. m

TrroREM 11.3. 4 family {M,, M,, M3} is cyclic iff at least one of the follow-
ing two conditions is satisfied:

) MinM,nM; = @.

() MinM,nMy = OV M, AM, "M = @VMinMunM, = O m

Notice that (ii) is equivalent to the fact that one of the sets M,, M,, M, is
contained in the union of the other two.

THEOREM 11.4. 4 family {M,, M., M,} is linear iff at least one of the follow-
ing three conditions is satisfied.: -

@ M; = M; for some i,je{1,2,3}, i+ ]

(i) M;nM; = @ for some i,je {1,2,3}, i #].

(i) MinM; = My = M;UM, for somei,j, ke {1,2,3},i#j,j# kk#i m

More details and the proofs of the above theorems can be found in [14].

® &
® &

Fig. 5. The f-graphs realizing the admissibility of a family of three sets
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12. Equivalent families

Let us recall that our basic problem is to construct, for a given MM < Z(X), an
f-graph realizing the admissibility (of a specified class) of M. If the structure of Mt
is complicated then our problem becomes very difficult. We can then apply the
following method. We try to transform 9 into a certain family MM’ such that "
has a simple structure allowing an easy solution of our problem, and I’ is “equiv-
alent” to 9N in the sense that each f-graph realizing the admissibility of I’ realizes
the admissibility of It and conversely. This method will be exploited in the cases
of linear and cyclic families. Now we shall describe it more precisely. For the sake
of simplicity we shall restrict ourselves to the class Z(X).

Let us define for any M < 2(X) and ¥ = LF(X),

Mt = {(GeLFX): VMMM, G e},
g* = (M eP(X): NGe¥)(M,Ge¥}.

¢ is the set of all f-graphs realizing the linearity of 9, and #* is the greatest
family segmental over each G €%. The mappings M - M* and ¥ & ¥* have
the following properties:

D) M= N=DT* > N*,

(i) W = W=, 4 < g+,

(i) oxe* = Wi, grax = g,
being an example of a Galois connection (see Cohn [2]).

DrerNITION 12.1. (2) We define an operator Dg: Z(P(X)) = #(2(X)) as
follows:

Y cH=>GF 2 K,

DM = M** for each M = 2(X).

(b) M is Z-dependent on M if M e Dx(IN).

(c) M and N are F-equivalent (in symbols W ~ ¢ N) if M* = N*,

Now let us examine the interpretation of the above notions. Dg(9) contains
exactly these subsets of X which are “forced” to be segments in each f-graph realiz-
ing the linearity of M. M is #-dependent on M iff M is a segment in each f-graph
realizing the linearity of 9. For instance, if M, N € M and MNN # @, then MUN
is #-dependent on M. M ~ o N iff the same f-graphs realize the linearity of m
and M.

It is clear that the same considerations can be carried out if any other class
of admissibility 2°(X) is taken instead of #(X). We then obtain the notions of
A -dependence, A -equivalence, and the operator Dy .

The following simple lemmas result from the general properties of Galois
connections (see Cohn [2]).

LemMMA 12.2. Dy is a closure operator, i.e., for each n,N.c 2X)

(i) M < N=Dr(M) = D).
(i) M < D). .
(i) Dy (D£(M)) = Dy (M). &
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Notice that in general Dy (@) # @ and Dx(RUN) # Dxr(M)UDH(N).
Lemma 12.3. The following conditions are equivalent:
@) M~ N.
(i) Dx(@) = D (@).
(i) Each M eI is A -dependent on N and each N €M is A '-dependent on
M. = :
DERINITION 12.4. Two sets M, N ovérlap (in symbols M X M) if
MAN # @AMNN # GAN\M # O,
The following simple lemma enables us to find some (in general not all) sets
dependent on a family.
LeMMA 12.5. Let M, N eI < P(X) and let x € X. Then
() O and {x} are o/ dm-dependent on M.
(i) &, {x} and X are &-dependent on M.
If MY N then MUN, MaN, M\N, N\M are %-dependent on Mm.
(ifi) @, {x}, X and X\ {x} are ¢-dependent on M. X \M is ¢-dependent on M.
If MYNAMUN # X then MUN, MAN, M\N, N\M are %-dependent on M.
(iv) @ and {x} are sf-dependent on M. MNN is stidependent on M. u
As an example of an application of the above lemma we shall consider the
following theorem.
THEOREM 12.6. Let M = P(X) and let x, be a fixed element of X. Define
MW = {MD: MeM}
where .
£(M)={1 lf X ¢ M,
0 if xpeM
(recall that M* = M, M°® = X\ M). Then the families M and M’ are €-equivalent.
Moreover, Wt is cyclic iff W' is linear.
Proof. Every M eI’ is ¥-dependent on M since M eIM] or X\M eIk,
Similarly, every N e MM is ¥-dependent on M'. By Lemma 12.3, M’ ~¢ M. Sup-
pose that M is cyclic. Then M’ is cyclic, and consequently linear. Indeed, x, ¢ | J M

e e
o ~~

- ~.
g ~~
/// \\
v \\
// \\
/ \,
y .
/ N
/
/ AN
[: . >
i 5 3 9 6 2 7 4 8

Fig. 6. Constructing an f-graph for a given family of sets
and the edge (x,,S(%,)> can be deleted from any f-graph (X, S) realizing the
cyclicity of 9. Conversely, if M’ is linear, then it is cyclic and, since M~e D',
IM is cyclic. m .
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The theorem above provides a simple method of reducing the problem of
finding an f-graph realizing the cyclicity of a family to an analogous problem for
the linear case.

Exampie 12.7. Let X = {1,2, ..., 9} andlet M = {{1,4,5,8}, {2,3,5,6,9},
{2,4,7}, {2,4,6,7,8}}. We take x, = 8 and we obtain M’ = {{2,3,6,7,9},
{2,3,5,6,9}, {2,4,7}.{1, 3,5, 9}}. Then we construct an f-graph <X, ) realiz-
ing the linearity of M’ (for a method of construction of such an f-graph see the
next section) and we add the edge {e(X), h(X)) = (8, 1) (see Fig. 6). The resulting
f-graph realizes the cyclicity of M.

13. Algorithms for constructing an f-graph for a given family of sets

In this section we give algorithms for constructing f-graphs for families of classes
LX), ZX), ¢(X) and L*(X).

The case M e L*(X) is trivial. Indeed, M is then linearly ordered by =. We
find a minimal (with respect to <) set in M, say M, and we order it linearly (by
a successor function). Then we find a minimal set in MN\{M,}, say M,, and we
add M,\M, at the beginning of our ordering, and so on. After a finite number
of steps we obtain a linear f-graph such that I is finally segmental over it (or, if
M; & M;,, for some i, we find out that M ¢ L*(X)).

* Inorder to deal with the case M e £ (X), we shall need a decomposition theorem,
which is based on an idea of Fulkerson and Gross [3]. First we shall give some
auxiliary definitions.

DerNtrioN 13.1. Let M < 2(X).

(a) The overlap graph O(9) is a nondirected graph with M as the set of vertices,
two vertices joined by an edge iff M Y N.

(b) A family Z = M is a block of M if 4 is the set of vertices of a component
of O(M). (For graph-theoretical notions see Harary {7].) '
(c) We define a partial ordering < on the set of blocks of I as follows:
BB, = AM, e B,) AM, e BY) M, S M,.

(d) A block # of M is maximal if it is a maximal element in the ordering <,
i.e., there is no block &' > 4.

THEOREM 13.2 (Decomposition Theorem). (2) A family I is linear iff all its
blocks are linear.

(b)) A family M = P(X), such that X ¢ M, is cyclic in exactly two cases:

(i) All the blocks of W are linear (and consequently M is linear).

(ii) There is exactly one maximal block of W, and it is cyclic. The other blocks
are linear. N

(0) A family M is acyclic iff all its maximal blocks are acyclic and all the other
blocks are linear.

Proof. The necessity of the above conditions is obvious. For the sufficiency
let us notice that if #;, < %, then |_J %, is contained in a component of #,. The
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ordering of elements within a component is, as we noticed in Section 10, immaterial.
Thus we can proceed as follows. We take an f-graph realizing the linearity (cyclicity,
acyclicity) of the maximal blocks. Then we modify it to render the blocks of “depth”
two (i.e., the immediate <-predecessors of the maximal blocks) segmental. Then,
if necessary, we modify the ordering within the components of blocks of “depth”
two, in such a way that the blocks of “depth” three are segmental, and so on. m

Now we are going to describe an algorithm for constructing an f-graph realiz-
ing the linearity of a family of sets. In virtue of the Decomposition Theorem we may
Testrict ourselves to the case where our family, I = 2(X), consists of one block.
Without loss of generality we may also assume that |_) M = X. The algorithm
constructs a family 9t e #*(X) such that each f-graph realizing the final linearity
of Tt realizes the linearity of 9 and conversely (for more details see [11]).

Step 1. We find a minimal “connected covering” M, = M, ie., a <-minimal
M = M such that

0O Um =

(i) O(M").(see Def. 13.1(a)) is connected.

To this end we check, for each M e M, whether MM\ (M} satisfies (i) and (ii)
and, if so, delete M from M. The resulting family M, is a minimal “connected
covering” and O(IM,) has the form of an elementary path (provided that M e £X)),
Let M, be one of its endpoints. It is easy to see that M, is a final or initial segment
in each f-graph realizing the linearity of t.

Step 2. Given the set M,, we can produce other final segments (we can restrict
ourselves to the case where they are final, since <X, S can be replaced, if necessary,
by (X, S~1)). More specifically, we construct a family N—the least family N
< #(X) such that

@ Mo et';

(i) if M eWAN e MAMAN # GAN\M # & then MUN, M\Ne".

It is easy to see that Rt'e Z*(X) (if M e L(X)) and that for each M eI
there are two sets Ny, N, € 9t such that M = N,\N; (recall that M is a block).
It is easily seen that each f-graph realizing the final linearity of 9 realizes the linear-
ity of M, and conversely.

Step 3. We construct an f-graph realizing the final linearity of 9.

Exampre 133. Let X = {1,2,...,10}, M= {{1, 2,4}, {1,2,3,4,7,9},
{2, 5,9, 10}, {9, 10}, {1, 7}, {3, 6, 8}, {1,3, 4,6,7,8}}. Step 1 gives My

{{1 2,3,4,7,9}, {2,5,9,10}, {3, 6, 8}} We take M, = {2,5,9,10}. The
whole construction is shown in Fig. 7.

The algorithm was implemented in PL/1 and was run on an TBM/370 (Model
145) computer. For the example shown in Fig. 8 and Fig. 9 (X} = 50, || = 100)
the execution time was 19.25 s. The output of the program consists of two incidence
matrices of M, the second one with rows permuted in such a way that it has con-
secutive 1’s in each column (see Section 9).. :

©
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6 8 3 7 1 1 9 9 10 2 (X, 8)

Fig. 7. Constructing an f-graph for a linear family of sets (see Example 13.3)

The program is also capable of constructing an f-graph realizing the cyclicity
of a family of sets. The method described in Section 12 (see Theorem 12.6) is then
used.

For the case M e &/*(X) the construction of the appropriate f-graph is as
follows. Let M = {M,, M,, ..., M,}. We construct the families

g'nlMI: m]Mz\Mls thMa\(M1VM2); ooy mﬂM,.\(MluMzu see UMnag)

These families are finally linear and have disjofnt unions. We construct for
each of them an f-graph realizing its final linearity. Then we glue them togcther
by adding appropriate edges.

14. Augmentation of a family

The consjderations of this section are motivated by problems arising in updating
i.s.r, systems. There are two kinds of updating: one can change either the set of
singled out terms (queries), or the set of objects. This leads to the following
question: How should the appropriate f-graph be modified to remain good for the
modified family of sets? All the theorems of this section are constructive, that is,
they provide an algorithm for performing such a modification of an f-graph.

The situation is simple when a set of our family is deleted (we need not change
the f-graph), or when an object x € X is deleted (we take the contraction <X, S)|y\ (x}
which is good for My~ (), see Theorem 9.5).

16 Banach t. II
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Now we shall study the possibility of the addition of a new set to a family.
By Theorem ~13.2, if we add to a linear family M < P(X) a set M < X which does
not overlap any set of 9t then MMy {M} remains linear ({M} is then a block).
In particular, M may be contained in a compopent of M or M2 UM

TrEOREM 14.1. Let M € o/ *(X) and let M = X be a set such that M|y € L*(M).
Then MU {M} e L(X).

Proof. Let M be finally segmental over an acyclic f-graph (X, S) and let
M, be finally segmental over a linear f-graph (M, S;>. Let the f-graph <X, SD|y\ u
have k components. For each i, 1 < i < k, there is a unique vertex x; of the ith
component such that x; ¢ Sy . Let xo be the end of M in (M, S,). Then the
f-graph <X, S, where

§ = SpwUSTIu{Ga, xop: 1 < i<k},

realizes the acyclicity of Mu{M}. =
Notice that the condition M|y € £* (M) in the above theorem can be replaced by

@NeM MAUMc N

12

(X, S ixm

9 2

2 9

1 13
(M, Sy) (M, 57

Fig. 10. Constructing the f-graph <X, S)> (see Example 14.2)

EXAMPLE 14.2. Let (X, S be the f-graph shown in Fig. 10, let I be the family
of ‘all final segments in <X, S) and let M = {1,2,9,13}. The construction of

©
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(X, S is shown in Fig. 10. If the f-graph (X, S is linear then (X, $ is also linear.
Hence we obtain

THEOREM 14.3 (Ghosh [5]). If M e L*(X) and M < X then Mo {M} € Z(X).

Proof. If M e L*(X) then M|y € L*(M) for every M = X. m

Let us notice that M is a final segment in the f-graph (X, S> constructed in the
proof of Theorem 14.2. From this fact one can easily deduce the following

THEOREM 14.4. Let M, My, LX), UM UM, =G and let M = X.
Then M, UM, U{M} e L(X).

Another theorem of this type, which can easily be proved, is the following

THEOREM 14.5, Let M = M, UM, where Mu {X\N: NeM,} e £*(X), and
let M < X. Then MU{M}e?X). u

Now we shall study the possibility of adding a new element to the set X, that
is, for a given M = P(X) we shall consider families M = P(Xu {x}) such that
Mix = M. We shall call Dt an extension of M. To each M e M there corresponds
an M e M equal to M or MU {x}. It is easy to see that 9% and I are in the same
class of admissibility if the addition of x does not create any new nonempty com-
ponent, i.e. if there exists a y € X such that for each M e M, ye M iff x e M. In
this case the necessary modification consists of adding the edge <y, x) and, if
y € 28, replacing {y, S@)) by <{x, S()>. .

THEOREM 14.6. Let |[X| > 2 and let M < P(XU{x)) be an extension of M
c2(X). '

(a) M is cyclic iff there exist y, z € X and an f-graph{X, S realizing the cyclicity
of M such that S(y) = z and

MeMy: y,zeMc (MeWy: xeM} s {(MeMy: ye Mvze M}
where Mo = {MeM: M+ G}; ’

(b) M is linear iff there exist y, z € X and an f-graph (X, S) realizing the linear-
ity of M such that either S(y) = z and

Mey: y,zeM} s (MeMy: xeMyc {MeMy: ye Mvze M)
or z¢ DS and

{(MeMy: xeM} = {MeDMy: ze M}

Proof. To prove the “if” part of the theorem we replace in {X, S) the edge
{y, z) by the edges {y, x), {x, z), or, in the second case in (b), we add the edge
{z,x). To prove the “only if” part we take the contraction to X of an f-graph
realizing the cydlicity (linearity) of I%. m .

15. Decomposition into linear and acyclic subfamilies

In practice wé often encounter a situation in which a family of sets to be stored
in the memory of a computer is not admissible. What we can do then is to decompose
it into admissible subfamilies, and store each of them separately. Such a solution
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leads to redundancy: some objects are stored several times. The best decomposition
M =MuM,u ... UM, is the one which minimizes this redundancy, expressed
by the package coefficient

k
p=Y | UD/L where L= M|
i=1 MeMt

The problem of finding such an optimal decomposition is very difficult. How-
ever, certain simple decomposition algorithms producing, in general,” suboptimal
decompositions can be proposed (see [17]). For instance, we can exploit the fact
that each family consisting of two sets is linear, and decompose I into such sub-
families. Suppose that |I| = 2k. The package coefficient of a decomposition

M = {M;, M}0{Ms, M,}u ... {Mag_y, My}
is
k k
p =i21 | M3 O Myl /L = l_leMzi—lﬁMzi|/L~
Thus, instead of minimizing
k
_21 My 1 UM,

we can maximize
k
2 | MMy

i=1

The algorithm is as follows:

Step 1. We find a pair of distinct sets M;, M, € I with the greatest inter-
section |M;nM,| and put M, = {M,, M}, then we find a pair M;, M, e T\,
with the greatest intersection |M3;nMy|. The proo@ss is continued until we obtain
a decomposition

M = M, uM,u ... VI
such that for i = 1,2, ..., k, M, = {Ma;_1, My;} and the sets My;_,, M,; have
the greatest intersection among all pairs of sets of WM\, LML ... VM_)).

Step 2 (optional). We find a pair of subfamilies MM, = {4, B}, M, = {C, D}

(r # s5) with the greatest value of
(r, 5) = max(JANC|+|BND|, |AnD|+|BnC[)~ (|AnB|+|CnD}).

Then, if é(r,s) > 0, we interchange sets between M, and M;, putting either

M, = {4,C}, M,= {B,D} (f |[AnC|+|BnD| > |AnB|+|CnD))
or

M, = {4,D}, M,= {B,C} (f |AnC|+|BnD| < |AnB|+|CnD)).

We repeat the .above procedure until further improvement is impossible
(i.e., until é(r,s) < 0).

This algorithm was implemented in PL/1 and was tested on an IBM/370
computer. For instance, for the family of sets

{U, UB), Ula), UB), U(c), U(d), U(4), U(B), U(C)}
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from the example given in Section. 1, the decomposition was

{U@), U)o {U(), U} {Uo), UC)}o{UE), UB}u{U@}
with the package coefficient 0.747 (without Step 2 the package coefficient was 0.753).
The execution time was 3.81 s.

Similarly, Theorem 11.1 can serve as a basis for decomposition into admissible
subfamilies consisting of three sets. Suppose that |J| = 3k. The package coefficient
of a decomposition

M= {My, My, Ma}U{My, M5, Ms}U ... O{Map_», May_y, May}
can be written as

k k
p= g [Msio UM UMyl L = 1~ ; o(Mai_s, My, My)/L

where. we write o(4, B, C) = |AnB|+|BNC|+|CnA4|—|AnBnC].
Thus, instead of minimizing

k.
'21 |M3i-2 UM UMy

we can maximize
k
2, 0(Myiz, Myi-z, M)
=

The algorithm is similar to the previous one. Instead of finding pairs M,;_4,
M,; maximizing |M;_ ;N My;| we now find triples My;_,, Ma;_ 1, M3; maximizing
o(M3i-s, M3i_y1, Ms;). The algorithm was also implemented. For the same family
of sets as before the decomposition was

. {U@), U®), U} {U@, Ule), UC)}u{Ula), U@), U(B)}
with the package coefficient 0.680.

Thus, when we use the method of inverted files to implement the i.s.r. system
from Section 1, the required storage space can be decreased by exploiting the above
algorithms by 25.3% and 329/, respectively.

If the information on the values of descriptors, i.e. the sets U(a), a € 4, is
not available one should group together pairs (triples) of descriptors with a similar
meaning, since the intersection of their values (or ¢ in the case of triples) is then
expected to be relatively large. .

For more details and other decomposition algorithms the reader is referred
to [17].

16. Admissibility over i.s.r. systems

As we remarked in Section 9, to every family of terms s# = J there corresponds,
in a fixed i.s.r. system &, a family of sets M = {||¢||»: ¢ € #°}. This enables us to
speak about admissible families of terms:

DeriNITION 16.1. (a) A family # < Z is admissible over an i.s.r. system &
if the family of sets MM = {||t||»: ¢t € 5#°} is admissible.
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(b) A family # < 7 is absolutely admissible if it is admissible over every i.s.r.
system (recall that 4 and Ry are fixed).

In all the definitions and theorems of this section admissibility can be replaced
by linearity, cyclicity, etc.

THEOREM 16.2. Let ¥, &, be two i.s.1. systems and let &1 = &, (see Section 5).
Then a family o# < T is admissible over & iff it is admissible over & ,. In particular,
we can take as &, the unique (up to isomorphism) selective system equivalent to &, .

Proof. If ¥y =&, then the families {||?||»: te3#} and {Ht”y;: ted}
are easily seen to be similar (see Def. 10.1(c)). Thus our theorem follows from
Theorem 10.2. m

THEOREM 16.3. Let &1 = &, (see Def. 6.1) and let # be a family of terms
in the language of & 1. If # is admissible over &, then it is admissible over & .

Proof. Let M, = {||t|ls,: t € #} be admissible. Then M, = {||t][s,: t € #}
is also admissible, since M; = M|y, where X, is the set of objects of & (see
Theorem 9.5). & :

THEOREM 16.4. Let &, and &, be two is.r. systems and let # < T . Assume
that for every simple term te T, ||t|ly, = @ = |[t||», = . Then, if # is ad-
missible over &,, it is also admissible over &, .

_ Proof. We use the preceding two theorems and the fact that &, is equivalent
to a subsystem of ¥,. W

If we take &5 = Pmax (See Section 5), we obtain the following

COROLLARY 16.5. 4 family of terms is absolutely admissible iff it is admissible
over Frax. B

In practice, updating a system causes the set of objects and the function U to
vary in time. Consequently we are interested in families of terms which are absol-
utely admissible rather than admissible over a fixed system. However, there is
one exception: Sometimes we know some relations between descriptors of different
attributes. This is equivalent to the possibility of predicting a priori that certain
components will always be empty. In such a case we may consider families of terms
admissible over a certain proper restriction of &py.

From the fact that the admissibility of a family depends only on which of its
components are nonempty, we can easily deduce the following

THEOREM 16.6. For every #,< T there exists a formula @ of the language %4,
such that for every is.r. system &,

S is admissible over ¥ <+ = ®. u

Thus the admissibility of a family of terms is expressible within the language
£ 4. For instance, if 5# = {r, s, t} then the sentence “s# is acyclic” is equivalent
to the formula r+ s~ t = FVr- ~s-t=FV ~r-s-t = F (see Theorem 11.2).
The above formula is positive, and this is a general fact. It can be shown that @
is always equivalent to a positive formula, this fact being a special case of the follow-
ing, more general theorem:
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THEOREM 16.7. Let a formula @ have the following property: for every systenr
& =KX, 4, Ry, U,

SED=> (VY X)), E .

Then D is equivalent to a positive formula. m

The formula @ from Theorem 16.6 is usually very complicated, and we do-
not know any reasonable way of constructing it. This is the reason why this theorem
is usually of no practical use.

17. Related combinatorial problems

In this section some combinatorial problems related to admissible families of sets.
are briefly described. ]

DeriNITION 17.1.(2) The intersection graph 4(I) of a family M is a non-
directed graph with 9% as the set of vertices, two different vertices M, N joined by
an edge iff MnN # @.

(b) A nondirected graph G is representable in a class of admissibility £ (X)
if there exists M e o (X) such that G and ¥(M) are isomorphic.

Boland and Lekkerkerker [1] give the following characterization of represent-
able in #(X) graphs (in a slightly different form):

THEOREM 17.2.°A nondirected graph is representable in ¥ (X) for some X, iff”
it is a non-asteroidal rigid circuit graph.

(A graph is asteroidal if there exist vertices v;,v,,v; and paths Py, P,, P3
such that for i = 1,2, 3, P; joins the two vertices v;, j # i, and there is no edge
joining v; with any vertex of P;. A graph is a rigid circuit graph if for each of its.
elementary cycles of length > 3 there exists an edge joining two vertices of that
cycle, not joined by any edge of the cycle.) m

Simple examples show that, in general, there are many families, both linear
and non-linear, with the same intersection graph. Nevertheless, the following
theorem holds:

THEOREM 17.3 (see [11]). A family M is linear iff $(MoF(IN)) is a non-aster-
oidal rigid circuit graph. m

Since there is a strong restriction on the number of non-empty components
of a linear family (see Theorem 10.4(b)), the above theorem can be of some use
in testing a family against linearity. Some methods of testing whether a given graph.
is asteroidal or a rigid circuit graph can be found in [1] and [3].

Another criterion of linearity is due to Nakano ([22], [23]):

THEOREM 17.4. A family M < P(X) is linear if cI(M), the least family M = W
such that

(VM ,NeM) (MnAN # @ = MUNeIV),
contains no triangles.
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(A triangle is a subfamily {M,, M,, M} such that M;AM,nMs # BA M
AM,AM, # OAMAM,AM, # O, where M; = X\M;)) m

An interesting combinatorial problem is that of reconstructing a family from
its interséction pattern. The intersection pattern of a family M = {M,, M,, ..., M}
is the n x n matrix [a;], ay = |M;nM;). In general the intersection pattern of a family
.does not determine that family up to isomorphism. But if two families I, N
have the same intersection pattern and M is cyclic, then M and N are isomorphic
(see [11]). Thus the intersection pattern of a family contains the information on
whether this family is cyclic or not. Similarly for the case of linear families.

Other combinatorial problems arise in the so called two-dimensional file organ-
ization, proposed, in the “linear” case, by Ghosh [6]. For the details the reader
is referred to [6} and [14].

18. Perspectives

Between the time when the Semester ended and the time of writing there have been
new developments in the subject. Most of them have been worked out in the
seminars continuing the work of the group formed at the Semester. We give here
a short report on the progress obtained, in order to show further perspectives of
the subject.

A. Quantifiers
‘One of the problems not considered in the formalism is that of the power of the
value of a term. This may be treated with the help of so called quantifiers, both
unary and having more arguments. We show several of them.

First, we extend our language by adding one or more symbols Q;, and to each
Q: we adjoin a natural number »; (the valency of quantifier 0;). We extend the
notion of a formula by stipulating that if #, ..., t,., are terms then Q; £y ... fy,—1
is a formula.

(i) Power quantifiers
Ot is interpreted as |||¢]]| = n.

(ii) Frequency quantifiers

Qrt is interpreted as =r O0O<r<g).

(ili) “More than” quantifier
Qtit, is interpreted as ||{#]]| > |[|[%lI].
(iv) “As many” quantifier

Ot;t, is interpreted as ||jz.])] = |llt2il].

‘There are examples of other quantifiers.
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Notice that the simplest quantifiers “There exist” and *“For all” are definable
in our system:
Jt<t # F,
Viet=T.

Results analogous to those concerning the existence of the system %, have
been also obtained for the systems with quantifiers.

B. Cardinality function

There is another, slightly more complicated approach to the problem of ex-
pressing the power of the value of a term. Namely, we add a symbol g to the language
and extend the set of terms by stipulating that if ¢ is a term not containing ¢ then
ot is also a term. The domain of interpretation of such a language consists of
a Boolean algebra of subsets of a set X, the truth values |/ and ], and in addition
the set N of natural numbers. Terms not containing ¢ and formulas are interpreted
as before: as subsets of X and truth values, respectively. ot is interpreted as a natural
number as follows:

lotll = |ll2]l] N,

i.e. the function symbol p is interpreted as the function |- |.

In the case of quantifiers queries could be of the type “Does ||¢|| consist of at
least 7 objects?” whereas now we can ask “How many objects does |{z|| consist
of?”, the latter question not being expressible by means of quantifiers.

Constants 1, 2, ... for the natural numbers (n being always interpreted as n),
as well as relation symbols <, <, etc., can also be introduced into the language.
Then we can form formulas of the type of > 7, ot < ps, ot = o5, etc., and express
most of the quantifiers.

C. Modifiers

The problem of a hierarchical approach has been solved in the formalism. It seems

that from the point of view of implementation procedures it was not the most suit-

able choice. This problem is tackled with the help of so called modified i.s.r. systems.
Apart from the basic sets of descriptors we have the set of so called modifiers.

Let H be a set of modifiers, H* = |_J H", i.e., a set of sequences of modifiers.
neN

F: A - P(H*) is a context function iff it satisfies the following condition:
heF@) = (Vn <@ | ne F)

where lh(ﬁ) is the length of % and Rl nis the sequence of the last n modifiers of i3
(Just consider the example: red, strongly red, almost red, etc.)
The definition of the set of terms is changed by adding the following clause:

If ac AnF e F(a) then hae T .
The definition of the set of formulas is not changed.

The definition of semantics is slightly changed to allow the terms ha. In this
way a number of results on hierarchical systems are more readily expressed. Indeed,

N
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a suitable choice of modifiers allows the introduction of hierarchy in the set of
descriptors. The subject is treated in detail in a forthcoming paper by Jaegermann,
Marek and Sobolewski [9], to which we refer the reader.

D. Systems with incomplete information

In [21] we promised to consider the problem of incomplete information. This may
be treated in various ways. One of them was thoroughly investigated by Jaegermann
[8], who considered systems where one knew only “approximate” descriptions of
objects.

Let us consider a new sort of descriptors: a;; for every subset A;; of 4;. The
intuition is that the value of a;; is the set of objects which have at least one of the
properties ¢ € A;;. This corresponds to the following situation: We know what
objects are “blue or green” but we are not able to classify them completely. This
leads to consideration closely related to the intuitionistic logic and so called pseudo-
Boolean algebras. The subject is treated in detail in a paper by Jaegermann [8].

E. Covering systems
Let &4 =<(X,A4,R;,U) be an is.r. system. A system P, ={X,B,R;, V) is
said to cover &, iff the following conditions are satisfied:
@O Jecl
(ii) There is a mapping C: |_J 4; — B such that
- jelt
(a) ae4; = C(a) e B;, for each jel.
® Ve = ) U@.
aeC-1(b)

The intuition which is connected with this is the following: &> is a “presystem”
classifying the objects in X according to some of the attributes from I, but not
necessarily in the same way as in &;.

We have the following fact:

The Boolean algebra of subsets of X describable in &, (i.e. B(¥>)) is a sub-
algebra of B(F1) and the generators of B(S,) (ie., values of simple terms in )
are sums of values of simple terms in &y. .

This suggests a special implementational algorithm, suitable in some cases.
Namely, we consider the components (i.e. the generators) of #(%,) as autonomous
is.r. systems. )

Let us illustrate this by an example.

Assume that we classify documents by the name of the author, the subject,
and the year and month of appearance. We can form a presystem (i.e., a covering
system) where we classify documents according to only the first letter of the name
and the year of appearance. Then the storage area where the appropriate com-
ponent is stored is organized as a smaller i.s.r. system where we search for documents

_ only according to the other letters of the name, month of appearance and subject.

A detailed presentation of this idea is contained in a forthcoming paper by

the second author.
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F. Many-sorted systems

Apart from systems where there are only unary descriptors we may consider
also systems where we speak about binary, ternary, etc. relations over a given set
of objects.

Let us consider, as an example, a system classifying human beings where there
is a binary descriptor “married”. Then apart unary relations, i.e. sets, we have
binary relations describable within the system. Consider for instance the relation
consisiting of married couples where the husband is a doctor and the wife a nurse,
say. Let us observe that this is nothing else but the intersection of the following
two relations: one consisting of pairs where the first element is an object belonging
to {|doctor]| and the second element is an object belonging to ||nurse]| (i.e., their
Cartesian product), with the relation ||married||.

Now apart from Boolean operations we need other operations. For the sake
of simplicity let us restrict ourselves to the case where only binary descriptors are
allowed. Apart from terms which we now call unary terms we have binary terms
defined as follows. If # is a binary descriptor then it is a binary term, if #, z, are
binary terms then ?,, ¢, - f5, 1, +1, are binary terms. If zis a binary term then 7%
(corresponding to inverse relation) is a binary term. Finally, if ¢,, 7, are unary terms
then #, X ¢, is a binary term.

Thus, in our example we have formed (doctor x nurse) - married.

Let us notice that the binary relations—through projections—generate unary
relations (e.g. married generates husband and wife). Thus the class of unary terms
is also extended.

All this Jeads to a nice but much more complex theory of many-sorted i.s.r,
systems. The subject was discussed by the second author in his talk at the Jadwisin
Conference closing the Semester.

G. If-then-else construction

A natural extension of our language is the if-then-else construction. Let us con-
sider, as an example, the term if s+ ¢ = s then s else F (the semantics of the if-then-
else construction is defined in the natural way). If a term # contains the if-then-else
construction, then for each system & there is a term ¢, in the basic language (with-
out the if-then-else comstruction) such that [|f;]|s = |[t|l»>. However, this con-
struction cannot be eliminated uniformly for all i.s.r. systems. To define precisely
the set of terms and formulas in such an extended language we use simultaneous
induction, as is done in ALGOL 60 to define arithmetic and Boolean expressions.

H. Implementational methods

A new method of organizing an is.r. system has been proposed by the first author
in [13]. Tt exploits a normal form, other than the standard one. This form, called
minimal regular form, is the sum of all the so called prime regular implicants of
a given term. To define the latter, let us suppose that [= {1,2,...,k}, 4
= {a®, aP, ...,aP_}. A positive primitive term s is a prime regular implicant
of ¢ iff s is of the form afl’ - af? - ..o af™, m< k and s < 1.

m’
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If the components in our system are arranged in a linearly ordered memory
according to the lexicographic ordering defined in Section 8, then the value of
each prime regular implicant is a segment in this ordering. Thus the minimal reg-
ular form of a term ¢ defines a decomposition of || #[| into a set of disjoint segments.
The addresses of the head and the end of each such segment can easily be computed.
For the details the reader is referred to [13].
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