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Introduction

In our lectures during the semester on “Mathematical Models and Numerical
Methods” at Banach Center we were concerned with the following problems:

1. Approximative solution of equations of the type 4u = 0, where A is a strongly
monotone and Lipschitzian operator.

2. Approximative solution of problems of the type Au+4us 0, where A is
a (possibly multivalued) maximal monotone operator and A is again strongly mon-
otone and Lipschitzian.

3. A posteriori error estimates for approximate solutwns of equatlons with
monotone operators.

The results we presented and further information on some special cases one
can find in Gajewski~-Groger—Zacharias [11] (Kap.IIL3, Kap. V), in Aubin [I]
(Chap. 10) and in a series of papers of Gajewski-Groger ([5]-[10]). Therefore, in
this paper we shall not repeat the contents of our lectures. Instead of this we shall
present some results, which are closely related to the subject of our lectures and
which were stimulated by our stay at Banach Center. We shall consider problems
of the type

Au+BAus0, wueD(A),

where A is maximal monotone and 4, B are strongly monotone and Lipschitzian.
Our results are slight generalizations of the results of Gajewski-Groger [5] on prob-
lems of the type Au-+ Au 5 0 mentioned above.

The paper consists of 3 sections. In Section 1 we start with a precise formu-
lation of the problems we are interested in and we prove an existence and uniqueness
result by means of the contraction principle. We show under some assumptions on 4
and B that it is possible to reduce the original problem to the iterative solution of
a sequence of problems with linear operators instead of 4 and B. In Section 2 we
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prove the convergence of Galerkin’s method and of a projectioq-iteration method,
which combines Galerkin’s method and the iteration method mentioned before.
The projection-iteration method is useful especially if the maximal monotone oper-
ator A is linear, because in this case our problem is reduced to relatively simple linear
problems. In Section 3 we consider two examples. We show that the results of Sec-
tions 1 and 2 are applicable to certain pseudo-parabolic and evolution equations.
Let us remark that an existence result for initial value problems of the form

du

Au+B—d't— =0,

where 4 and B are nonlinear operators was proved already by Barbu [2]. His assump-
tions on A and B are quite different from those used in this paper.

u(0) = a,

1. Iteration

Let X be a real Hilbert space with the scalar product -, - >x and let X* be the dual
of X. By (-, -> we denote the pairing between X* and X. The norm in the Cartesian
product X x X we define by
Ny 2llxxx = (ulz+lolp?  Vu, 0] e XxX.
As usual (see e.g. Brezis [3]) we consider every set A < X x X as a multivalued map-
ping from X to X. We use the following notations:
Au = {o] [u,v]ed} Vuek,
D(A) = {ul ueX, Au # G}.
DErNITION 1. A set 4 < X% X is said to be monotone if
Vg, 911, Y[uz, 92l € 4.
A monotone set 4 < XxX is said to be maximal monotone if it is maximal with
respect to inclusion among the monotone subsets of X' x X.
DerNiTION 2. If 4 € (X — X*), we define Mon(d4) (the so-called monotonicity
constant of A) by :

{uy—up, 03 —02)x = 0

. {Au—Av,u—o)
Mon() = inf, ——1. o1
- I;#U

A is said to be (strongly) monotone if Mon(A) is (strictly) positive.
DEFINITION 3. Let Y and Z be Banach spaces. If 4 € (¥ — Z); we define Lip(4)
(the Lipschitz constant of A) by

| du—4do|z

Lol = e ol

noe
u#v

If Lip(4) < oo, then A is Lipschitzian.
In this section we assume that we are given operators 4, B and 4 such that

e ©
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(€)) d4e(X X%, my:=Mon) >0, M, :=Lip(4) < oo,

) Be(X—X*), mp:=Mon(B)>0, M:= Lip(B) < o0,

3) 4 = Xx X is maximal monotone,

We consider the problem

Au+BAus0, ueD(A).
This problem can be written as follows:
@ Au+Bo =0, [u,v]eAd.

We are going to formulate (4) as a fixed point problem. Let L be the (linear) duality
map from X onto X* characterized by _

(Lu, o> ={u,vdy Yu,VoeX

and let p > 0, g > 0 be given real numbers. It is well known (cf. Brezis [3]) that
the problem

) L(qu+po) = q(L—pA)f+p(L—qB)g, vedu,

has a unique solution [u, 9] € X x X for arbitrary [f, g] e X x X. Therefore, it makes
sense to define an operator U, , e (XXX — XxX) by

© U, o([af, p2D) = lqu, po] <> [u, o] satisfies (5).

Remark 1. Evidently, [qu, pv] is a fixed point of Up,q if and only if [u, o] is
a solution of (4).

'LEMMA L. Let (1)~(3) be satisfied. If U, , is defined by (6) then
(Lip(U,,9))* < (LipL—pA))*+ (Lip(L—gB))?.
Proof. Let [f;, gl e Xx X and [qu, pv;] = U,.o(lafi, pgiD), i = 1, 2. Then
1Up,o(l9f1, P&1D— Up,o([4f2 > P22 DExx o
= g —u2), (01— 0)Exx = llgCus—u)3+p(os—v)|2
< g —u2) |12+ 2pg<us — 115, 0 — 025 + [ (0, — ) |3
= llq(us ~uz) +p(v1—0)1} = | L(qus+pvy)— Lqu; +po,)|3*
= llg(L—pA)f: +p(L—gB)g:1—q(L—pA)f2—p(L—qB)g.|3*
< (qLip(L—pA)| fi—falx+pLip(L—gB) gy —2,lx )
< {(Lin@—pA))*+ (Lin(L— ¢B) )} (l9(fi ~ /)3 + Ip(g1 —£2)13)
- = {(Lip@—p))*+ (Lip(L—gB))*} | [af1, pg:l - [af2, PE2]I3xx-
This proves the lemma.
Remark 2. Lemma 1 shows that U, , is strictly contractive if
) k:= (Lip(L—p4))*+ (Lip(L—¢B))? < 1.
In view of (1) and (2) we have (see e.g. Browder-Petryshyn {4])
®  (LipL—p)) < 1-2mp+Mip*, (LipL—gB))* < 1-2mpg+Mjg2.
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Using (8) it is easy to see that one can satisfy (7) by a suitable choice of p and qif
2 2
my mg
— 1.
® (%) +(Mn) ”,

This relation holds e.g. if we have 4 = L or B = L.
If 4 is a potential operator, i.e., if

-

(du, vy = lim % (Fu+ )~ F)) Vu,VoeX,
t—0

where Fe (X — R), then we have
(10) Lip(L—pA) = max(l—map, Map—1).
(Lemma 4.14, Kap. III, in [11] shows Lip(L—pA) < max(1—mg4p, Msp—1), and
the inverse inequality.can be shown easily by elementary estimations.) Correspond-
ingly, if B is a potential operator, we have
11 Lip(L—g¢B) = max(1—msq, Mgq—1).
Therefore, in the case of potential operators 4 and B we can satisfy (7) by a suitable
choice of p and g if .
maMy mpMp 1
2 (ma+M4)>? * (ms+ Mp)* T

TreoreM 1. Let (1)~(3) be satisfied. Moreover, let A and B satisfy condition
(7) for fixed real numbers p > 0 and q > 0. Then problem (4) has a unique solution
[u, vl. If the sequence ([ui, v;]) is determined by
13) L(qu+pv) = qL—pDu+p(L—gBWwi_y, wiedu,i=1,2,..,

[uo, ©ol € X x X arbitrary,

then [y, 9] ~ [1, 9] in XX X; more precisely,

. ) Copp\2 B
9 g+ lpe—oli < (%,;) (g ~uo)l3+Ip@:—vl3).  °

Proof. In view of Remark 1 the theorem is an immediate consequence of Lemma
1 and Banach’s fixed point theorem.

2. Projection and projection-iteration

We assume that we are given 4, B and 4 as in Section 1. Let (X,) be a sequence
of subspaces of X such that

13 Xy € Xppyy, n=1,2,..., UX,isdenseinX.
n

‘We denote by X;f the dual spéce of X, and by (-, * ), the pairing between X;¥ and X,.
We define operators 4, € (X, - X¥) and B, e (X, » X;) by

(16) {Apu, 0y = (Au, 0y, {Bau,vpy = {Bu,v) Vu,VoelX,.
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Furthermore, we assume that (4,) is a sequence such that

17 A, < X, x X, is maximal monotone
and
(18) A= {[u,v] eXxX]lim inf |[u—vw,v—9,]lxxx = 0}.

=00 [Un, Unl€dn

The condition (18) means that A is approximated in a certain sense by the operators
A,. Besides (4) we consider the corresponding “Galerkin problems”

19) Aytty +B0, =0, [y, 0] €4,
THEOREM 2. Let (1)-(3), (7) and (15)-(18) be satisfied. Then, for every n the

problem (19) has a unique solution [u,, v,] and we have

(20) [tn, 0a] = [, 9] n XXX,

where [u, v] denotes the solution of (4).
Proof. Let L, be the duality map from X, onto X} characterized by

{Lptt, Py = u, Ox  Yu,VoeX,.
Because Lip(L,—pA4,) < Lip(L—pA) and Lip(L,—¢B,) < Lip(L—gB) the existence

and uniqueness of a pair [u,, v,] satisfying (19) follows from Theorem 1. In view
of (18) there exists a sequence ([, @,)) such that

@n [, On) € Ay, [B> 0n] = [u,9] D XxX.
Using (4), (19) and (21), we obtain
I qCtn— )+ p (0 =) %
= (q(L—pAYur— g(L—pAYTin+p(L—gBYo,—p(L— qB)v,.
'+ pg(Au—Atty+ Bo— Bt,), q(tty—1n)+p@n—Tn)
< {k(1q@un—un) 3 + |p@a—B)IZ)*? +Pe(M 4l — Uy Ix+ Mallo—allx)} %
X [|g(tn—1n) +P(@n—Tn)|lx
< {kllg(un— un) + @5 —0,) | x +Pa(M allu—nllx+ Mplo—Tullx)} x
% ||g(ty —1n) +P (@ —T)lx-
Hence

14 tn— ) + P Tl < o (Malli— Tl + Mllo ~5y L)
Consequently, we have
lg@n—unld+ 1P~ 3 < NgCtn—Tn) +p@a—va)%
< ( - k) (M lu—Tinllx+ Mallo—4]1x)

(oM)*+ (gMz)?

= (I=k)? (llq(u—ﬁn) I3+ “P(")“‘En)";i)
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and
@) (lge—w)l}+p@.—~2)F)"

< (LML) 1) (- + -2

From (21) and (22) follows assertion (20).
Remark 3. Relation (22) shows that
| [te—ttm, D= D)l xcx < const- inf [[[u—%, 9—Fullxxx-
. [ttn, Dnl€An
Therefore, the Galerkin sequence ([u,, ©,]) gives a “quasi-optimal” approximation
of [u, 9] by elements of 4,.

The next theorem shows that under the assumptions of Theorem 2 it is possible
to approximate the solution [u, o] of (4) by means of a so-called projection-iteration
method.

TueoreM 3. Let (1)-(3), (7) and (15)-(18) be satisfied. If the sequence ({il,, s))
is determined by

@3 L(@in+25n) = 4Ln—pArYin 1 +P(Ln—dBon-1, ¥ € duiin,
n=1,2,.., [ug,0o] €Xy XX, arbitrary,
then we have
[ty 0] ~ U, 9] inXxX,
where [u, v] denotes the solution of (4).
Proof. We define Uy, ,,, € (X, = X)) by
Us.0.n (14f> pgD) = lqu, pv] <
Lu(qu+p0) = (Lo —pAnf+p(La—4Ba)g, v € dpu.
Then U, , . is strictly contractive with the contraction constant & (cf. (7)). The

fixed point of U, ,, is [qus, pos), Where [u,, v,] denotes the solution of (19). We
can write (23) as follows:

[qﬁnspsul = Up,q.n([qi"n—l 9P5n~1])s h = 1: 2: (A3} [ﬁﬂs 50] EXI XXl arbitrary.

Therefore, Theorem 3 follows immediately from Theorem 2 and Lemma 3.2, Kap.
101, in [11].

3. Applications

In this section we show that it is possible to find periodic solutions of certain pseudo-
parabolic equations or evolution equations using the methods of the previous
sections.

Let S = [0, T] be a finite interval of the real axis. If E is a Hilbert space we -

denote by L3(S; E) the Hilbert space of all square integrable functions defined
on § with values in E (provided with the usual scalar product) and by C(S;E)
the space of all continuous mappings from S into E with the supremum norm.

e ©
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Let V be a real Hilbert space. By V* we denote the dual of ¥ and by (-, *) the
pairing between V* and V. We assume that (V,) is a sequence of subspaces of ¥
such that

24 Vo< Vagr, n=1,2,.., UV,isdensein V.
n

By V¥ we denote the dual of ¥, and by (-, *), the pairing between ¥} and V,. For
the sake of brevity we introduce the following notations: )

X =L3S; V), X*=L*S:V¥),
X, =L2S; V), X¥=L*S;VM,
{Fou) = S (@), u@))dt  VfeX* VueX,

S -
oy = {(fO), u®))udt  VfeXF, VueX,.
S

As in the previous section we denote by L and L, _the duality maps of X and X,,
respectively.

3.1. Pseudo-parabolic equations. If u € X we denote by «’ the derivative 6f u
in the sense of distributions on ]0, T with values in V. Let

W= {uueX,u'eX}, Mulf=Iulz+lulz VYueW
and
W, = {ul ueX,, v eX,}.
We assume that 4 € (X - X*) and B e (X — X*) are operators satisfying (1) and
(2). We are interested in problems of the type
25) Au+By' =0, ueW, u(0)=uT).
Such problems occur for instance in the theory of viscoelasticity, where 4 and B
are given by elliptic differential operators. }
TreorReM 4. Let (1), (2), (9) and (16) be satisfied. Then the problem (25) has a
unique solution u. If we put p = m,/M3 and q = mg/M3 and determine the sequence
(tn) By
(26)  Lu(qun+pun) = Q(Ln—DAn)tin_s +P(Ln—~gB)thh_i, Uy € W,
u,(0) = us(T), n=1,2,..., uge W, arbitrary,
then we have w, — u in W.
Proof. We define 4 = XxX by
A = {[u,w] ue W,u(0) = u(T)}.
This set A is maximal monotone (see e.g. [11], Lemma 1.7, Kap. VI). Evidently,
problem (25) can be written as
Au+Bo =0, [u,vled.
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Therefore, the first part of Theorem 4 follows from Theorem 1. Let A, < X, x X,
be defined by
Ay = {[u, w']| u€ W, u(0) =u(T)}.
By P, we denote the orthogonal projection from X onto X,. If [u,u'] e A then
[Pott, (Pute)] = [Pau, P,u'] €A,

and

[Pau, (Paw)] — [u, 4] inXxX.
Hence, the sequence (A,) satisfies condition (18). Therefore, (26) is a formulation
of method (23) in the special case considered here. Consequently, the second part
of Theorem 4 follows from Theorem 3.

Remark 4. Let V, be of finite dimension d, and let A, ..., k4, be a basis of V,.
Then we can represent u, in the form

d‘l
up = ) by, e L¥(S),

and we may regard (26) (with » fixed) as a system of linear ordinary differential
equations with respect to the unknown functions ¢}. The coefficients of this system
are the elements of Gram’s matrix of the basis Ay, ..., hs,, which are independent
oftesS.

Remark 5. In the same way as (25) we could treat initial value problems of the
type
27 Au+Bu' =0, ueW, u0)=a,

where ¢ is a known element of V" and 4, B satisfy the conditions (1), (2), (7). A some-
what different projection-iteration method for problems of the type (27) was formula-
ted already in [11] (Kap. V). This method does not need the strong monotonicity
of 4 and the assumption (7). On the other hand the operator that corresponds
to the operator U,,, used here is contractive on X = L*(S; V) only, if one provides
this space with the norm

fulaos = (§ e " utot3ar)

- s

where k is a sufficiently great positive number. Moreover, the method requires A
and B to be so-called Volterra operators.

3.2. Evolution equations. We use all notations introduced at the beginning of
this section. Moreover, we assume that H and H,, n = 1, 2, ..., are Hilbert spaces
such that

V'is continuously and densely imbedded into H,
(28) H <cH,c..cH,
V. is continuously and densely imbedded into H,.

icm°
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Identifying the space H and its dual we obtain
VeHcV*
Similarly, we find
ViceH,cVF (n=1,2,..).
‘We denote now by u’ the derivative of u € X or u X, in the sense of distributions
on [0, TT with values in ¥* or ¥y, respectively. Let
W= {lueX,u eX*}, |uly = lul3+wld VueW
and )
Wo={ulueXy,weXs}, |ulf, = uld,+1l% Vue W,
We assume that we are given operators 4 e (X — X*) and C e (X* — X*) such that
A satisfies (1) and C is strongly monotone and Lipschitzian, which means that
B:= CL e (X — X*) satisfies (2). We are now interested in problems of the type
29 Aut+Cu' =0, ueW, u0)=u(T.
Defining 4 = Xx X by
A= {[u, L") ue W, u0) = u(T)}
we can write (29) as
Au+Bo =0, [u,vled.

Let

An = {[u, L'l ue Wy, u(0) = u(T)}.
It is easily proved that (18) is satisfied also in this case. Therefore, it is possible

to apply the results of Sections 1 and 2 to problem (29). We do not want to go into
details here.

Remark 6. Gajewski and Groger [5] have considered already two important
special cases of problem (29). The first case is
Widu=0, ueW, u(0)=u),
and the second
Cu'+Lu=0, ueW, u0)=uT).
Gajewski and Groger treated these cases with the aid of two different maximal
monotone operators /1 whereas we use the same 4 in both cases. *
Remark 7. We could apply our results also to initial value problems of the
form
(30 Au+Cuw' =0, ueW, u)=acH.

Remark 8. In the case of the problems (29) and (30) we can prove stronger
results on the convergence of the methods considered in this paper, provided the
operators 4 and C satisfy some further conditions. We shall deal with this question
elsewhere (cf. Gajewski-Groger [6]-[9], where such stronger results were proved
in the two special cases mentioned in Remark 6).
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NUMERICAL METHODS FOR SOLVING VARIATIONAL INEQUALITIES
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Institute of Math ics, Polish Academy of Sci Warsaw, Poland

. 1. Variational inequalities

Let X be a reflexive Banach space and let X be a convex, closed, non-empty subset
of X. We denote by X* the dual space of X and by {, > the duality pairing between
X* and X. For a given map A which maps X into X* we consider the following
problem:

ProBreM 1. Find u e K such that for every v e K
{Aw),v—u) = 0.

Problems of this type often arise in practice (see [1], [2]) and there is a natural
need of numerical methods for solving them. Since Problem 1 is a generalization
of a problem involving variational equations (for X = X Problem 1 has the form
of a variational equation), therefore a study of approximate methods for solving
it is important for numerical methods theory.

A very detailed survey of approximate methods for solving variational in-
equalities is given in [1]. Here we complement the results of Mosco’s paper with
an estimation of the rate of convergence. :

2. An approximation of a Banach space and its dual

Let @ be a subset of the interval (0, 1] such ‘that inf@ = 0 and let n be a function
mapping @ into the set of natural numbers {1,2,3,...}.
A family {X,,px, 's}nee Will be called an approximation of a Banach space X
iff for every h e ®
@) X, = R*™, the n(h)-dimensional Euclidean space,

(i) py: Xy — X, py, (prolongation) is an isomorphism from Xj onto a closed
(0)) subspace P, of X (the space of approximants),

(iii) ry is a linear map from X into X, which is a left inverse of py, i.e., for

every u, € X;, we have rypru, = 4.

[119]
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