

References

- [1] J. P. Aubin, Approximation of elliptic boundary-value problems, New York 1972.
- [2] V. Barbu, Existence theorems for a class of two points boundary problems, J. Diff. Eqs. 17 (1975), pp. 236-257.
- [3] H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies 5, North Holland 1973.
- [4] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), pp. 197-228.
- [5] H. Gajewski and K. Gröger, Ein Iterationsverfahren für Gleichungen mit einem maximal monotonen und einem stark monotonen Lipschitz-stetigen Operator, Math. Nachr. 69 (1975), pp. 307-317.
- [6] —, —, Zur Konvergenz eines Iterationsverfahrens für Evolutionsgleichungen, ibid. 68 (1975), pp. 331-343.
- [7] —, —, Zur Konvergenz eines Iterationsverfahrens für Gleichungen der Form Au + Lu = f, ibid. 69 (1975), pp. 329-341.
- [8] —, —, Ein Projektions-Iterationsverfahren für Evolutionsgleichungen, ibid. 72 (1976), pp. 119-136.
- [9] —, —, Ein Projektions-Iterationsverfahren für Gleichungen der Form Au' + Lu = f, ibid. 73 (1976), pp. 249-267.
- [10] —, —, Konjugierte Operatoren und a-posteriori-Fehlerabschätzungen, ibid. 73 (1976), pp. 315-333.
- [11] H. Gajewski, K. Gröger und K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin 1974.

Presented to the Semester Mathematical Models and Numerical Methods (February 3-June 14, 1975)

BANACH CENTER PUBLICATIONS VOLUME 3

NUMERICAL METHODS FOR SOLVING VARIATIONAL INEQUALITIES

ANDRZEJ WAKULICZ

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

1. Variational inequalities

Let X be a reflexive Banach space and let K be a convex, closed, non-empty subset of X. We denote by X^* the dual space of X and by \langle , \rangle the duality pairing between X^* and X. For a given map X which maps X into X^* we consider the following problem:

PROBLEM 1. Find $u \in K$ such that for every $v \in K$

$$\langle A(u), v-u \rangle \geqslant 0.$$

Problems of this type often arise in practice (see [1], [2]) and there is a natural need of numerical methods for solving them. Since Problem 1 is a generalization of a problem involving variational equations (for K = X Problem 1 has the form of a variational equation), therefore a study of approximate methods for solving it is important for numerical methods theory.

A very detailed survey of approximate methods for solving variational inequalities is given in [1]. Here we complement the results of Mosco's paper with an estimation of the rate of convergence.

2. An approximation of a Banach space and its dual

Let Θ be a subset of the interval (0, 1] such that $\inf \Theta = 0$ and let n be a function mapping Θ into the set of natural numbers $\{1, 2, 3, ...\}$.

A family $\{X_h, p_h, r_h\}_{h \in \Theta}$ will be called an approximation of a Banach space X iff for every $h \in \Theta$

- (i) $X_h = R^{n(h)}$, the n(h)-dimensional Euclidean space,
- (ii) $p_h: X_h \to X$, p_h (prolongation) is an isomorphism from X_h onto a closed subspace P_h of X (the space of approximants),
 - (iii) r_h is a linear map from X into X_h which is a left inverse of p_h , i.e., for every $u_h \in X_h$ we have $r_h p_h u_h = u_h$.

NUMERICAL METHODS FOR SOLVING VARIATIONAL INEQUALITIES

Since X_h is a finite-dimensional space, then by (1ii) there exists a basis $\{\varphi_{h,j}\}_{j=1}^{n(h)}$ in the space P_h such that for every $u_h = (u_h^1, \dots, u_h^{n(h)}) \in X_h$

$$p_h u_h = \sum_{j=1}^{n(h)} u_h^j \varphi_{hj}.$$

If

$$e_{hj} = \{\delta_{kj}\}_{k=1}^{n(h)} \text{ for } j = 1, ..., n(h), \qquad \delta_{kj} = \begin{cases} 1 & \text{for } k = j, \\ 0 & \text{for } k \neq j, \end{cases}$$

and

$$r_h = \{r_{kh}\}_{k=1}^{n(h)},$$

then by (liii)

$$r_{kh}p_he_{hi}=\delta_{ki}$$
 for $k,j=1,\ldots,n(h)$.

For every $h \in \Theta$ we define a norm in X_h putting

$$||u_h||_{Xh} = ||p_h u_h||_X$$
 for every $u_h \in X_h$.

Let W denote any subset of X and let

$$E_h^X(W) = \sup_{u \in W} \frac{\|p_h r_h u - u\|_X}{\|u\|_X}.$$

The approximation $\{X_h, p_h, r_h\}_{h \in \Theta}$ is convergent on the set W iff

$$\lim_{h=0} E_h^{\chi}(W) = 0.$$

We associate with an approximation $\{X_h, p_h, r_h\}_{h\in\Theta}$ of the space X a family $\{X_h^*, p_h^*, r_h^*\}_{h\in\Theta}$ defined as follows:

For every $h \in \Theta$

(i)
$$X_h^* = X_h = R^{n(h)}$$
,

(2) (ii)
$$p_h^* f_h = \sum_{i=1}^{n(h)} f_h^i r_{jh}$$
 for every $f_h = (f_h^1, \dots, f_h^{n(h)}) \in X_h^*$,

(iii)
$$r_{jh}^* f = \langle f, p_h e_{hj} \rangle$$
 for $j = 1, ..., n(h)$ and for every $f \in X^*$.

LEMMA 1. If $\{X_h, p_h, r_h\}_{h \in \Theta}$ is an approximation of a Banach space X, then the family $\{X_h^*, p_h^*, r_h^*\}_{h \in \Theta}$ is an approximation of the space X^* dual to X.

Proof. Since $r_{1h}, \ldots, r_{n(h)h}$ are linearly independent elements of X^* $(r_{kh}p_he_{hj} = \delta_{kj})$, therefore by (2ii) p_h^* is an isomorphism from X_h onto $P_h^* = \text{Lin}(r_{1h}, \ldots, r_{n(h)h})$. Moreover, by (2iii), r_h^* is a linear map from X^* into X_h^* , and for every $f_h \in X_h^*$

$$\begin{split} r_h^* p_h^* f_h &= \{r_{jh}^* p_h^* f_h\}_{j=1}^{n(h)} = \{\langle p_h^* f_h, p_h e_{hj} \rangle\}_{j=1}^{n(h)} \\ &= \left\{\sum_{i=1}^{n(h)} f_h^k \langle r_{kh}, p_h e_{hj} \rangle\right\}_{j=1}^{n(h)} = \left\{\sum_{i=1}^{n(h)} f_h^k \delta_{kj}\right\}_{j=1}^{n(h)} = f_h, \end{split}$$

which proves that $\{X_h^*, p_h^*, r_h^*\}_{h \in \Theta}$ is an approximation of the space X^* .

LEMMA 2. If an approximation $\{X_h, p_h, r_h\}_{h \in \Theta}$ of a Banach space X is convergent on X, then the approximation $\{X_h^*, p_h^*, r_h^*\}_{h \in \Theta}$ of its dual X^* , defined by (2), is also convergent and

121

$$E_h^{X^*}(X^*) \leqslant E_h^X(X)$$
.

Proof. Let us observe that for every $f \in X^*$ and $u \in X$

$$\langle p_h^* r_h^* f, u \rangle = \langle f, p_h r_h u \rangle.$$

In fact,

$$\langle p_h^* r_h^* f, u \rangle = \left\langle \sum_{j=1}^{n(h)} (r_{jh}^* f) r_{jh}, u \right\rangle = \sum_{j=1}^{n(h)} \langle f, p_h e_{hj} \rangle \langle r_{jh}, u \rangle$$
$$= \left\langle f, \sum_{j=1}^{n(h)} \langle r_{jh}, u \rangle p_h e_{hj} \right\rangle = \left\langle f, p_h r_h u \right\rangle.$$

Therefore

$$|\langle f - p_h^* r_h^* f, u \rangle| = |\langle f, u - p_h r_h u \rangle| \leqslant ||f||_{X^*} ||u - p_h r_h u||_{X}$$

and

$$E_h^{X^*}(X^*) = \sup_{f \in X^*} \frac{\|f - p_h^* r_h^* f\|_{X^*}}{\|f\|_{X^*}} = \sup_{f \in X^*} \left\{ \frac{1}{\|f\|_{X^*}} \sup_{u \in X} \frac{|\langle f - p_h^* r_h^* f, u \rangle|}{\|u\|_X} \right\}$$

$$\leq \sup_{u \in X} \frac{\|u - p_h r_h u\|_X}{\|u\|_X} = E_h^X(X),$$

which proves the assertion of Lemma 2.

3. An approximation of convex sets in a Banach space

Let X be a Banach space and let $\{X_h, p_h, r_h\}_{h\in\Theta}$ be an approximation of X. For a given non-empty, closed and convex subset K of X we define a family $\{K_h\}_{h\in\Theta}$ of sets in the following way:

(3) For every $h \in \Theta$, K_h is the closure of the set $\{u_h : u_h = r_h u, u \in K\}$ in the norm $\| \cdot \|_{X_h}$.

We shall give here three lemmas characterizing the family $\{K_h\}_{h\in\Theta}$.

LEMMA 3. If K is a bounded subset of X and the family $\{K_h\}_{h\in\Theta}$ is defined by (3), then for every $h\in\Theta$, K_h is a bounded subset of X_h .

Proof. If K is a bounded subset of X then there exists a positive constant r such that $\|v\|_X \le r$ for every $v \in K$. Since for every $h \in \Theta$ and $v_h \in K_h$ there exists, by (3), a sequence $\{v^k\}_{k=1}^{\infty}$ such that for every $k=1,\ldots,v^k \in K$ and $\lim_{k=\infty} \|v_k - v_k\|_{Y_k} = 0$, therefore the inequality

$$||v_h||_{Xh} \leqslant ||v_h - r_h v^k||_{Xh} + ||r_h v^k||_{Xh} \leqslant ||v_h - r_h v^k||_{Xh} + ||p_h r_h v^k - v^k||_{X} + ||v^k||_{X}$$

$$\leqslant ||v_h - r_h v^k||_{Xh} + [1 + E_h^X(K)]r,$$

which is valid for every k, k = 1, 2, ..., implies

$$\|v_h\|_{Xh} \leqslant [1 + E_h^X(K)]r,$$

and this ends the proof of Lemma 3.

LEMMA 4. If K is a closed, non-empty and convex subset of X and the family $\{K_h\}_{h\in\Theta}$ is defined by (3), then for every $h\in\Theta$, K_h is a closed, non-empty and convex subset of X_h .

Proof. First we prove that for every $h \in \Theta$ K_h is a convex subset of X_h .

Let u_h, v_h be arbitrary elements from K_h . Then there exist sequences $\{u^k\}_{k=1}^{\infty}$, $\{v^k\}_{k=1}^{\infty}$ of elements which belong to K, such that

$$\lim_{k=\infty} \|u_h - r_h u^k\|_{Xh} = 0 = \lim_{k=\infty} \|v_h - r_h v^k\|_{Xh}.$$

Since K is convex, then for every $\lambda \in [0, 1]$ and k = 1, 2, ... we have

$$w^k(\lambda) = \lambda u^k + (1 - \lambda)v^k \in K$$

and

$$\lim_{k=\infty} \| [\lambda u_h + (1-\lambda)v_h] - r_h w^k(\lambda) \|_{Xh} = \lim_{k=\infty} \| \lambda (u_h - r_h u^k) + (1-\lambda) (v_h - r_h v^k) \|_{Xh} = 0,$$

which proves that $\lambda u_h + (1-\lambda)v_h \in K_h$, i.e., K_h is a convex subset of X_h .

Observing that the set K_h is non-empty by the definition of r_h (see (1)) and closed by condition (3), we end the proof of Lemma 4.

LEMMA 5. If an approximation $\{X_h, p_h, r_h\}_{h \in \Theta}$ of a Banach space X is convergent on a subset K of X, then for every $h \in \Theta$, $h \leq h_1$ and for every $u_h \in K_h$

$$\inf_{v \in K} \|v - p_h u_h\|_{X} \leq 2 \|p_h u_h\|_{X} E_h^{X}(K),$$

where the family $\{K_h\}_{h\in\Theta}$ is defined by (3) and

(4)
$$h_1 = \begin{cases} \sup \Theta, & \text{if } E_h^X(K) < \frac{1}{2} \text{ for all } h \in \Theta, \\ \inf[h] E_h^X(K) \geqslant \frac{1}{2}, h \in \Theta], & \text{if there exists } \tau \in \Theta \text{ such that } E_\tau^X(K) \geqslant \frac{1}{2}. \end{cases}$$

Proof. By the definition (4) of h_1 we have for every $h \in \mathcal{Q}$, $h \leq h_1$,

$$E_h^X(K) < \frac{1}{2},$$

and therefore for every $v \in K$ and every $u_h \in K_h$

(5)
$$\frac{1}{2} \| p_h u_h - v \|_{X} \leqslant [1 - E_h^X(K)] \| p_h u_h - v \|_{Y}.$$

Since

$$||p_h u_h - v||_X \le ||p_h u_h - p_h r_h v||_X + ||p_h r_h v - v||_X$$

and

$$\|p_h r_h v - v\|_X \leqslant E_h^X(K) \|v\|_X \leqslant E_h^X(K) [\|v - p_h u_h\|_X + \|p_h u_h\|_X],$$

then

(6)
$$[1 - E_h^X(K)] \| p_h u_h - v \|_X \leqslant E_h^X(K) \| p_h u_h \|_X + \| p_h u_h - p_h r_h v \|_X.$$

Inequalities (5) and (6) imply

$$||p_h u_h - v||_X \le 2||p_h u_h||_X E_h^X(K) + 2||p_h u_h - p_h r_h v||_Y$$

Hence we get the assertion of Lemma 5, since by (3)

$$\inf_{v \in K} \|p_h u_h - p_h r_h v\|_X = \inf_{v \in K} \|u_h - r_h v\|_{Xh} = 0.$$

4. An approximation of variational inequalities

Let $\{X_h, p_h, r_h\}_{h \in \Theta}$ be an approximation of a Banach space X and let $\{X_h^*, p_h^*, r_h^*\}_{h \in \Theta}$ be the approximation of X^* , defined by (2). For every $h \in \Theta$ we define a duality pairing between X_h^* and X_h as follows:

$$\langle f_h, u_h \rangle_h = \sum_{j=1}^{n(h)} f_h^j u_h^j$$

for every $f_h = (f_h^1, \dots, f_h^{n(h)}) \in X_h^*$ and $u_h = (u_h^1, \dots, u_h^{n(h)}) \in X_h$. For a given map A, which determines Problem 1 formulated in Section 1, we consider a family of operators $\{A_h\}_{h\in\Theta}$ defined by the relations:

(7)
$$A_h(u_h) = r_h^* A(p_h u_h) \quad \text{for every } u_h \in X_h \text{ and } h \in \Theta.$$

We shall study the corresponding family of finite-dimensional variational inequalities:

PROBLEM 2. For every $h \in \Theta$ find $u_h \in K_h$ such that for every $v_h \in K_h$

$$\langle A_h(u_h), v_h - u_h \rangle_h \geqslant 0$$
,

where the family $\{K_h\}_{h\in\Theta}$ is defined by (3) and the family $\{A_h\}_h$ is given by (7).

We shall consider properties of the family of maps $\{A_h\}_{h\in\Theta}$ which are implied by the following properties of the operation A:

(i) strict monotonicity: A is strictly monotone iff for every $u, v \in X$, $u \neq v$, we have

$$\langle A(u)-A(v), u-v\rangle > 0;$$

(ii) strong monotonicity: A is strongly monotone iff there exists a positive constant k such that for every $u, v \in X$ we have

$$k\|u-v\|_X^2 \leqslant \langle A(u)-A(v), u-v\rangle;$$

(iii) hemicontinuity: A is hemicontinuous iff for every $u, v \in X$

$$\lim_{t=\pm 0} \langle A(u+tv), v \rangle = \langle A(u), v \rangle;$$

(iv) coercivity: A is coercive on K iff there exist an element $v_0 \in K$ and a positive constant r, such that $||v_0||_X < r$ and for every $v \in K$, $||v||_X = r$, we have

$$\langle A(v), v-v_0 \rangle > 0;$$

(v) strong coercivity: A is strongly coercive on K iff there exist an element $v_0 \in K$ and positive constants r, δ , α , such that $||v_0||_X < r$ and for every $v \in \{x: x \in X\}$ $dist(x, K) < \delta$ we have

$$\langle A(v), v-v_0 \rangle \geqslant \alpha$$
.

The following Browder theorem justifies our interest in the properties listed above.

Browder's Theorem ([3]). If A is a strictly monotone hemicontinuous map from a reflexive Banach space X into its dual X*, K is a closed convex non-empty subset of X, and if either K is bounded or A is coercive on K, then there exists a unique solution of Problem 1.

We shall prove that almost all properties from our list transfer from the operation A to the family of operations $\{A_h\}_{h\in\Theta}$.

THEOREM 1. If A is strictly (strongly with a constant k) monotone on X, then for every $h \in \Theta$, the operation A_h defined by (7) is strictly (strongly with the constant k) monotone on X_h .

Proof. Strict monotonicity. For every $h \in \Theta$ and every $u_h, v_h \in X_h, u_h \neq v_h$,

$$\langle A_h(u_h) - A_h(v_h), u_h - v_h \rangle_h = \langle A(p_h u_h) - A(p_h v_h), p_h u_h - p_h v_h \rangle > 0,$$

since $p_h u_h$, $p_h v_h \in X$, $p_h u_h \neq p_h v_h$ for $u_h \neq v_h$, and A is strictly monotone.

Strong monotonicity. For every $h \in \Theta$ and every $u_h, v_h \in X_h$

$$\begin{aligned} k \|u_h - v_h\|_{Xh}^2 &= k \|p_h u_h - p_h v_h\|_X^2 \leqslant \langle A(p_h u_h) - A(p_h v_h), p_h u_h - p_h v_h \rangle \\ &= \langle A_h(u_h) - A_h(v_h), u_h - v_h \rangle_h, \end{aligned}$$

since $p_h u_h$, $p_h v_h \in X$ and A is strongly monotone.

THEOREM 2. If A is hemicontinuous on X, then for every $h \in \Theta$ the operation A_h defined by (7) is hemicontinuous on X_h .

Proof. For every $h \in \Theta$ and every $u_h, v_h \in X_h$

$$\langle A_h(u_h+tv_h), v_h \rangle_h = \langle A(p_hu_h+tp_hv_h), p_hv_h \rangle.$$

Therefore, by assumed hemicontinuity of A

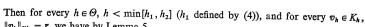
$$\lim_{t=+0} \langle A_h(u_h+tv_h), v_h \rangle_h = \langle A(p_h u_h), p_h v_h \rangle = \langle A_h(u_h), v_h \rangle_h.$$

THEOREM 3. If A is bounded and strongly coercive on K and if an approximation $\{X_h, p_\kappa, r_h\}_{h\in\Theta}$ of X is convergent on K, then there exists a positive constant h_0 such that for every $h \in \Theta$, $h < h_0$, the operation A_h defined by (7) is coercive on K_h .

Proof. If A is strongly coercive on K, then there are given positive constants r, δ , α , and an element $v_0 \in K$ satisfying definition (v).

Let h_2 be the positive number defined by

$$h_2 = \begin{cases} \sup \Theta, & \text{if } E_h^X(K) < \delta/2r \text{ for all } h \in \Theta, \\ \inf \left[h | E_h^X(K) \geqslant \delta/2r, h \in \Theta \right], & \text{if there exists } \tau \in \Theta \text{ such that } E_\tau^X(K) \geqslant \delta/2r. \end{cases}$$



 $\|v_h\|_{Xh} = r$, we have by Lemma 5

(8)
$$\operatorname{dist}(p_h v_h, K) \leqslant 2E_h^{\mathsf{X}}(K) \|p_h v_h\|_{\mathsf{X}} < \delta.$$

If h_3 is the positive number defined by

$$h_3 = \begin{cases} \sup \Theta, & \text{if } [1 + E_h^X(K)] \|v_0\|_X < r \text{ for all } h \in \Theta, \\ \inf [h] (1 + E_h^X(K)) \|v_0\|_X \ge r, h \in \Theta], & \text{if there exists } \tau \in \Theta \text{ such that} \\ [1 + E_\tau^X(K)] \|v_0\|_X \ge r \end{cases}$$
then for $h < h$,

$$(9) ||r_h v_0||_{Xh} = ||p_h r_h v_0||_X \leqslant ||v_0||_X + ||p_h r_h v_0 - v_0||_X \leqslant [1 + E_h^X(K)]||v_0||_X < r.$$

Therefore for $h \in \Theta$, $h < \min[h_1, h_2, h_3]$, and for every $v_h \in K_h$, $||v_h||_{Xh} = r$, we obtain, by the assumed strong coercivity of A and by inequalities (8), (9),

$$\begin{split} \langle A_h(v_h), v_h - r_h v_0 \rangle_h &= \langle A(p_h v_h), p_h v_h - p_h r_h v_0 \rangle \\ &= \langle A(p_h v_h), p_h v_h - v_0 \rangle + \langle A(p_h v_h), v_0 - p_h r_h v_0 \rangle \\ &\geqslant \alpha - \|A(p_h v_h)\|_{X^*} E_h^X(K) \|v_0\|_X. \end{split}$$

This proves that for every $h \in \Theta$, $h < \min[h_1, h_2, h_3, h_4]$, A_h is coercive on K_h ;

$$h_{4} = \begin{cases} \sup \Theta, & \text{if} \quad rE_{h}^{X}(K) \sup_{\|v\|_{X} = r} \|A(v)\|_{X^{\bullet}} < \alpha & \text{for all } h \in \Theta, \\ \inf [h] \quad rE_{h}^{X}(K) \sup_{\|v\|_{X} = r} \|A(v)\|_{X^{\bullet}} \geqslant \alpha, h \in \Theta] & \text{otherwise.} \end{cases}$$

Theorems 1, 2, 3 enable us to formulate the following existence theorem.

THEOREM 4. If A is a strictly monotone hemicontinuous bounded map from a reflexive Banach space X into its dual X*, K is a closed convex non-empty subset of X and either K is bounded or A is strongly coercive on K, and if $\{X_h, p_h, r_h\}_{h\in\Theta}$ is an approximation of X convergent on K, then there exists a positive constant ho such that for every $h \in \Theta$, $h < h_0$, Problem 2 has a unique solution.

Proof. The proof follows immediately from Browder's theorem, since Lemmas 3, 4 and Theorems 1, 2, 3 ensure that for $h \in \Theta$, $h < h_0$, the operation A_h and the convex subset K_h of X_h satisfy the assumptions of Browder's theorem.

5. A convergence theorem

Now we are going to prove that the family $\{u_h\}_{h\in\Theta}$ of solutions of Problem 2 is convergent to the solution of Problem 1. In the proof of this fact we shall use the following two lemmas:

LEMMA 6. If A is a bounded strongly monotone map from a Banach space X into X*, K is a closed convex subset of X, then

(a) every solution of Problem 1 is bounded,

(b) if $\{X_h, p_h, r_h\}_{h \in \Theta}$ is an approximation of X, convergent on K, solutions of Problem 2 are uniformly bounded.

Proof. Since K is a closed subset of X, then there exists an element $u_0 \in K$ such that $||u_0||_X = \inf_{x \in K} ||v||_X$.

For the solution u of Problem 1 we obtain from strong monotonicity of A the inequality

$$k\|u-u_0\|_X^2 \leqslant \langle A(u)-A(u_0), u-u_0 \rangle \leqslant \langle A(u_0), u_0-u \rangle \leqslant \|A(u_0)\|_{X^*}\|u-u_0\|_X$$
. Consequently

$$||u||_X \leq ||u_0||_X + \frac{1}{k} ||A(u_0)||_X,$$

which proves assertion (a).

For the solutions u_h of Problem 2 we get by Theorem 1 an analogous inequality

$$k||u_h-r_hu_0||_{X_h}^2 \leq ||A(p_hr_hu_0)||_{X_h}||u_h-r_hu_0||_{X_h};$$

therefore

$$||u_h||_{Xh} \le ||p_h r_h u_0||_X + \frac{1}{k} ||A(p_h r_h u_0)||_{X^*}$$
 for all $h \in \Theta$.

Since the approximation of X used here is convergent on K, then u_h are uniformly bounded.

LEMMA 7. If A is a bounded strongly monotone map from a Banach space X into X^* , K is a closed convex subset of X, $\{X_h, p_h, r_h\}_{h \in \Theta}$ is an approximation of X convergent on K, u is a solution of Problem 1 and u_h are solutions of Problem 2, then there exists a positive constant M_1 such that for every $h \in \Theta$, $h < h_1$ (h_1 defined by (4)),

$$\langle A(u), p_h r_h u - p_h u_h \rangle \leqslant M_1 E_h^X(K).$$

Proof. Since the set K is closed in X, then for every $h \in \Theta$ and every u_h which is a solution of Problem 2 there exists an element $v(h) \in K$ such that

$$||v(h)-p_hu_h||_X = \inf_{w \in K} ||w-p_hu_h||_X.$$

Let u be a solution of Problem 1; then, for $h \in \Theta$, $h < h_1$,

$$\langle A(u), u - p_h u_h \rangle = \langle A(u), u - v(h) \rangle + \langle A(u), v(h) - p_h u_h \rangle$$

$$\leq \langle A(u), v(h) - p_h u_h \rangle \leq ||A(u)||_{X^*} ||v(h) - p_h u_h||_{X}$$

$$\leq 2||A(u)||_{X^*} ||p_h u_h||_{X} E_h^X(K) \leq M_2 E_h^X(K),$$

by Lemmas 5 and 6. Consequently,

$$\langle A(u), p_h r_h u - p_h u_h \rangle = \langle A(u), p_h r_h u - u \rangle + \langle A(u), u - p_h u_h \rangle$$

$$\leq \|A(u)\|_{X^*} E_h^X(K) \|u\|_X + M_2 E_h^X(K)$$

$$\leq M_1 E_h^X(K),$$

which ends the proof.

Convergence theorem. If A is a strongly monotone and λ -hölderian map from a Banach space X into X^* , K is a closed convex non-empty subset of X, $\{X_h, p_h, r_h\}_{h \in \Theta}$ is an approximation of X convergent on K, then a family of solutions of Problem 2 is convergent to a solution u of Problem 1, provided those solutions exist.

Moreover, there exists a positive constant M such that for every $h \in \Theta$, $h < h_1$ (h₁ defined by (4)),

$$||p_h u_h - u||_X \leq M[E_h^X(K)]^{\mu}$$
, where $\mu = \min[\lambda, \frac{1}{2}]$.

 ${\it Proof.}$ Since ${\it A}$ is strongly monotone, then there exists a positive constant ${\it k}$ such that

$$k \|p_h u_h - p_h r_h u\|_X^2 \leqslant \langle A(p_h u_h) - A(p_h r_h u), p_h u_h - p_h r_h u \rangle$$

$$= \langle A_h(u_h), u_h - r_h u \rangle_h + \langle A(u) - A(p_h r_h u), p_h u_h - p_h r_h u \rangle_+$$

$$+ \langle A(u), p_h r_h u - p_h u_h \rangle_+$$

Taking into consideration that u_h is a solution of Problem 2 and A is hölderian, we obtain from the above inequality and from Lemma 7

$$k \|p_h u_h - p_h r_h u\|_X^2 \leq L \|u\|_X^\lambda [E_h^X(K)]^\lambda \|p_h u_h - p_h r_h u\|_X + M_1 E_h^X(K)$$
 for $h < h_1$.

Since for every y satisfying the inequality $ky^2 \le ay + b$ (k, a, b > 0) we have $y \le a/k + \sqrt{b/k}$, therefore

$$||p_h u_h - p_h r_h u||_X \le \frac{1}{k} L ||u||_X^{\lambda} [E_h^X(K)]^{\lambda} + \left[\frac{1}{k} M_1 E_h^X(K) \right]^{1/2}$$

and by Lemma 6

$$||u-p_hu_h||_X \leqslant ||u-p_hr_hu||_X + ||p_hr_hu-p_hu_h||_X \leqslant M[E_h^X(K)]^{\min[\lambda,1/2]}.$$

References

- [1] U. Mosco, An introduction to the approximate solution of variational inequalities. Constructive aspects of functional analysis, Ed. Cremonese, Roma 1973, pp. 499-685.
- [2] C. Baiocchi, Su un problema di frontiera libera conesso a questioni di idraulica, Annali Mat. Pura Appl. 92 (1972), pp. 107-127.
- [3] F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), pp. 780-785.

Presented to the Semester Mathematical Models and Numerical Methods (February 3-June 14, 1975)