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NUMERICAL METHODS FOR SOLVING VARIATIONAL INEQUALITIES

ANDRZEJ WAKULICZ
Institute of Math ics, Polish Academy of Sci Warsaw, Poland

. 1. Variational inequalities

Let X be a reflexive Banach space and let X be a convex, closed, non-empty subset
of X. We denote by X* the dual space of X and by {, > the duality pairing between
X* and X. For a given map A which maps X into X* we consider the following
problem:

ProBreM 1. Find u e K such that for every v e K
{Aw),v—u) = 0.

Problems of this type often arise in practice (see [1], [2]) and there is a natural
need of numerical methods for solving them. Since Problem 1 is a generalization
of a problem involving variational equations (for X = X Problem 1 has the form
of a variational equation), therefore a study of approximate methods for solving
it is important for numerical methods theory.

A very detailed survey of approximate methods for solving variational in-
equalities is given in [1]. Here we complement the results of Mosco’s paper with
an estimation of the rate of convergence. :

2. An approximation of a Banach space and its dual

Let @ be a subset of the interval (0, 1] such ‘that inf@ = 0 and let n be a function
mapping @ into the set of natural numbers {1,2,3,...}.
A family {X,,px, 's}nee Will be called an approximation of a Banach space X
iff for every h e ®
@) X, = R*™, the n(h)-dimensional Euclidean space,

(i) py: Xy — X, py, (prolongation) is an isomorphism from Xj onto a closed
(0)) subspace P, of X (the space of approximants),

(iii) ry is a linear map from X into X, which is a left inverse of py, i.e., for

every u, € X;, we have rypru, = 4.
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n

Since X, is a finite-dimensional space, then by (1ii) there exists a basis {gy;}j®
in the space P, such that for every u, = W, ..., i eX,
n(h)
Prty = z -

=1
If
1 for k=],
€nj = {"k}}gg—'i for j=1,..,n(h), Oy = 0 for k#j,
and
o= {ru i,
then by (liii)

Fupsen; = 8y for k,j=1, vy n(h).
For every h €@ we define a norm in X, putting
[usllan = lpatislx  for every u € Xs.
Let W denote any subset of X and let

lpnrau—ulx
flulx )

The approximation {Xj, pa, s}nee is convergent on the set W iff

HmEX(W) = 0.
h=0

Ejf(W) = sup
ueW

We associate with an approximation {Xy, px, s }sce of the Space X a family
{X#¥, p¥, ¥ Jneo defined as follows:
For every he®

O Xt =X = RO,

nth) o
@ G pfe =j;f..’ 7 for every fiy = (fit, ..., fi™) e Xi¥,

@) rEf = {f, puessy forj = 1, ..., n(h) and for every fe X*.

LemMA 1. If {Xy, pa, TsIneo is an approximation of a Banach space X, then the
Samily {XF,pi¥, r¥ e is an approximation of the space X* dual to X.

Proof. Since ryy, .., Ty ate linearly independent elements of X* (runPneny = Oips
therefore by (2ii) pf is an isomorphism from X, onto P# = Lin(rss, ..., Fahoh} e
Moreover, by (2iii), r# is a linear map from X* into X;*, and for every f, e X¥

¥ pifu= {"fhpf h}"‘:{ = {(Ptf hyphehj>}"(=hl).
n(h) (k)
n(h) nch)
=D A manto, = D ol =
k=1 =1

which proves that {X}¥, pif, r¥ Juce is an approximation of the space X’ *,
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LEMMA 2. If an approximation {Xy, py, ' }reo of a Banach space X is convergent
on X, then the approximation {Xi, pf, ri }ree of its dual X*, defined by (2), is also
convergent and

EF (@) < EE(0).
Proof. Let us observe that for every feX* and ueX
prrtfowy =y patnit)

In fact,
n(k) n(k)
otrtfiiy, = i) = Y <oprewy<r >
j=1 j=1
k)
= <f, Z<"jh:u>.phehj> =<fs patv)
=1
Therefore :
Kf—pirf, ] = IKf, u—paratd| < [ flxsllu—parsullx
and
X*(y%) — Lf=pEriflxe _ { 1 Kf=pirtf, )l }
B = 8 e R\ Tl s Mol
< sup flu—prryulx = EX(X),

ueX flullx
which proves the assertion of Lemma 2.

3. An approximation of convex sets in a Banach space

Let X be a Banach space and let {X;, ps, 7s}nee be an approximation of X. For
a given non-empty, closed and convex subset K of X we define a family {Kilheo
of sets in the following way:
(3) For every he 0, K, is the closure of the set {u,: up = ryu, u €K} in the norm
Il Hxn-
We shall give here three lemmas characterizing the family {K}ce-

LemMA 3. If K is a bounded subset of X and the family {Ki}nee is defined by (3),
then for every h € O, K, is a bounded subset of Xy.

Proof. If K is a bounded subset of X then there exists a positive constant 7
such that |[o[lx < r for every v € K. Since for every 2 € © and v, € K there exists,
by (3), a sequence {v*}., such that for every k =1, ...,o*e K and ’l‘mulo llop—

~ 0¥ xs = 0, therefore the inequality
o, —2* e+ |10 lxs < lon—T50 30+ P27 oF— o x+ [19F]1x

lonllzn < |
< llos— o lxn+ [1+EX KI7,
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which is valid for every k, &k = 1,2, ..., implies

loallcn < [1+EF (K)]r,
and this ends the proof of Lemma 3.

LemMA 4. If K is a closed, non-empty and convex subset of X and the family

{Ki}neo is defined by (3), the)z Jor every h € O, K, is a closed, non-empty and convex
subset of Xy.

Proof. First we prove that for every # € @ K, is a convex subset of Xj. -
Let u;, v, be arbitrary elements from K. Then there exist sequences {i*}g_,,
{o*}2; of elements which belong to K, such that

Lim [Juy — 1yt = O = lim lon—72*lxn.
k= k=c0

Since K is convex, then for every A e [0, 1] and k = 1, 2, ... we have

W (D) = MF4+(1—Aw* ek
and

’31'_111 I [0+ (1~ Doyl —ra w* (Dl = Ill_rg 4@ ~r)+ (1—2) (s—ri2D)]lxs = O,
which proves that Auy+(1— Aoy € Ky, ie., K, is a convex subset of Xj.

Observing that the set K, is non-empty by the definition of r, (see (1)) and
closed by condition (3), we end the proof of Lemma 4.

LemMA 5. If an approximation {Xy, py, Ts}nee of a Banach space X is convergent
on a subset K of X, then for every he®, h < hy and for every u, € K,

mf ”W“Ph"h”x 2| patanlx EX (K),

where the family {Ky}ueo is defined by (3) and
@ h = {sup@, if EfK)<% forallheo,
t " \inf[n| BX(R)> L, heB], if there exists 1€ O such that EX(K)> }.
Proof. By the definition (4) of h, we have for every he @, h < by,
EF(K) <4,
and therefore for every v € K and every uj, € X,
® Hpam—olx < [1— EF R prus—o]lx.
Since

lpsn—olx < |patt—pariollx+ Ipsrio —o|x

and

llpsrao—olx < EX(K) ”7’”:( EF (K)o —paus lx+ | patealix]s
then
©) [1=E¥(&)lpsun—v llx < EX(K)”PI: )l x+ | putn—pariox.

s
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Inequalities (5) and (6) imply

Ipnn—ollx < 2l pattallx EF (K)+ 2l patty — pario]x.
Hence we get the assertion of Lemma 5, since by (3)

inf || pyn—purollx = inf Juy—ry2)x, = 0.
vek vk

4. An approximation of variational inequalities

Let {X,, Py, s Jnee be an approximation of a Banach space X and let {X#, pf, ri}co
be the approximation of X*, defined by (2). For every 2 €@ we define a duality
pairing between X and X, as follows:

n(h) ’

e s tipn = th’ UJ{
g =1

for every f, = (fit, ..., A™) e X¢¥ and uy, = (uf, ..., 1J® ") € X;. For a given map 4,
which determines Problem 1 formulated in Section 1, we consider a family of operators
{A;,},,Ea defined by the relations:
D Ay(uy) =r¥A(pyuy) foreveryuyeXyand he®.
We shall study the corresponding family of finite-dimensional variational
inequalities:
PrOBLEM 2. For every h €@ find u, € K} such that for every v, € K,
Ay (), Dp—w = 0
where the family {K;}seo is defined by (3) and the family {d4,}; is given by (7).

‘We shall consider properties of the family of maps {4}, Which are implied
by the following properties of the operation 4:

(i) strict monotonicity: A is strictly monotone iff for every u,veX, u+# o,
we have

{Aw)—A(v), u~v) > 0;

(i) strong monotonicity: A is strongly monotone iff there exists a positive
constant k such that for every u, o € X we have

klu—vl} < <A@W)—A(®), u—v);
(iii) hemicontinuity: A is hemicontinuous iff for every u,v e X
lim (A (u+10), ) = (AW), v>;
1=+0
(iv) coercivity: A is coercive on K iff there exist an element v, € K and a positive
constant r, such that |o,flx < r and for every o € K, |o]lx = r, we have

{A®),v—2,> > 0;

e
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(v) strong coercivity: A is strongly coercive on K iff there exist an element
v, € K and positive constants , 8, o, such that |[9,]lx < rand foreveryv e {x:xeX,
dist(x, K) < 6} we have
{A@®),v—9¢) = a.

The following Browder theorem justifies our interest in the properties listed
above.

BROWDER'’S THEOREM ([3]). If A4 is’ a strictly monotone hemicontinuous map from
a reflexive Banach space X into its dual X*, K is a closed convex non-empty subset
of X, and if either K is bounded or A is coercive on K, then there exists a unique sol-
ution of Problem 1.

We shall prove that almost all properties from our list transfer from the oper-
ation 4 to the family of operations {4,}yco.

THEOREM 1. If 4 is strictly (strongly with a constant k) monotone on X, then
Jor every h € O, the operation A, defined by (7) is strictly (strongly with the constant k)
monotone on Xy,.

Proof. Strict monotonicity. For every he @ and every u,, v, € X;, uy # [

{Ai(ur)— An(vs), w—o>n = <A(py up)— A(paoy), Patts—pivs) > 0,
since puuy, pu0y € X, puuy, # prvy for uy # 0,, and A is strictly monotone.
Strong monotonicity. For every h €@ and every u;, v, € X,
Kl —on|%n = klpsn—proal3 < APu1r)— A(D01) , prus—pivny
= {Ay(@)— 4 (@), ur ~ 035,
since pyuy, psoy € X and A is strongly monotone.

THEOREM 2. If A is hemicontinuous on X, then for every h € O the operation A,
defined by (7) is hemicontinuous on X;,.

Proqf. For every h €O and every u;.‘, o, € Xy
{An(un+124), On) = (APt + 1404, Py -

Therefore, by assumed hemicontinuity of 4
i CAy o +194), 043 = <At 2ion> = CAu(), 9433

THEOREM 3. If A is bounded and strongly coercive on K and if an approximation
{Xus > Tutieo of X is convergent on K, then there exists a positive constant hy such
that for every he @, h < h,, the operation A, defined by (7) is coercive on Kj,.

Proof. If 4 is strongly coercive on K, then there are given positive constants
r, 8, o, and an element v, € K satisfying definition ).

Let A, be the positive number defined by

B {sup 0, ifEYK) <6/2r forallhe®,
> " |inf (4| BX(R) > 8/2r,he @], if there exists 7€ such that EX(K) > é8/2r.
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Then for every he O, h < minfh,, h,] (h, defined by (4)), and for every o, € K,
loullxn = r, we have by Lemma 5

¥ dist (pyos, K) < 2EX(K)lpswsllx < 6.
If hy is the positive number defined by

sup®, if [I+EFK)]|volx < rforallhe®,
hs =qinf[A) (1 +EF(R)lwollx = r ke 0], if there exists 7 € @ such that

[+ EX®)lleollx = 7,
then for h < hy

©)  Inolxs = Ipariollx < lIoollx+Ipars@0 —vollx < [1+EX K00y < r.

Therefore for he®, h < minlky, h,, h;], and for every o, € Ky, |[o4llxs = r, we
obtain, by the assumed strong coercivity of 4 and by inequalities (8), (9),

{Au(@n), ts—rivos = {A(Dos), PhOu—Pari®od
= {A(Psvn), Proy—00) +<{A(PsD1), Do —PiTi00)
Z a— | Aol xe Ex (K)lwo -
. This proves that for every A €0, h < minfh,, k,, hs, hyl, Ay is coercive on Kj;
here
sup®, if rEf(K)”s”up ld@)|x <« forallhe®,
vl x=r

ha = ling [#] rEX(K) sup lA@)gs > o, e @]  otherwise.
llellx=r

Theorems 1, 2, 3 enable us to formulate the following existence theorem.

THEOREM 4. If A4 is a strictly monotone hemicontinuous bounded map from a re-
Slexive Banach space X into its dual X*, K is a closed convex non-empty subset of X
and either K is bounded or A is strongly coercive on K, and if {Xu, Ph> T Inee is an
approximation of X convergent on K, then there exists a positive constant hy such
that for eyery he O, h < hy, Problem 2 has a unique solution.

Proof. The proof follows immediately from Browder’s theorem, since Lemmas
3, 4 and Theorems 1, 2, 3 ensure that for ke @, h < kg, the operation A, and the
convex subset K}, of X, satisfy the assumptions of Browder’s theorem.

5. A convergence theorem

Now we are going to prove that the family {un}neo of solutions of Problem 2 is
convergent to the solution of Problem 1. In the proof of this fact we shall use the
following two lemmas: :

LemMa 6. If A is a bounded strongly tone map from a Banach space X into
X*, K is a closed convex subset of X, then

(a) every solution of Problem 1 is bounded,
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®) if {Xu, Pu> Thineo is an approximation of X, convergent on K, solutions of
Problem 2 are uniformly bounded. :
Proof. Since K is a closed subset of X, then there exists an element u, & K such
that [luollx = in; lollx- .
VE. .
For the solution u of Problem 1 we obtain from strong monotonicity of 4 the
inequality
klu—uol} < {A@)—A(uo), u—upy < {A(uo), io—uy < [[A(uo)lxllu—uollx-
Consequently
- 1
llullx < luollx+ & [14(o)lx 5
which proves assertion (a). . .
For the solutions #; of Problem 2 we get by Theorem 1 an analogous inequality
Ellus—rauollzn < I A@arstio)x+lltn—rattollxn;
therefore
1
llnllxe < I[p;.r,,uollx+—,c— lA(parsuo)ix« forallhe®.

Since the approximation of X used here is convergent on K, then u, are uni-,
formly bounded.

LemMA 7. If A is a bounded strongly monotone map from a Banach space X into
X*, K is a closed convex subset of X, {Xn> Pr» Talneo 15 an approximation of X con-
vergent on K, u is a solution of Problem 1 and uy, are solutions of Problem 2, then there
exists a positive constant M such that for every h € ©, h < hy (hy defined by (4)),

<A, prryu—pruny < My EN(K).

Proof. Since the set K is closed in X, then for every 4 € @ and every u, which

is a solution of Problem 2 there exists an element o(/) € K such that

lo(d)—putillx = inf [lw—puti]lx.

Let u be a solution of Problem 1; ti:len, forhe®, h < hy,
<A@}, u—puuyy = (AW, u—v(h))+{A@), v(h)—prun)

< AW, v —pau> < [ A@) |20 (B —parnllx

< 21 A 1 xslpnuanllx EX (K) < M EF(K),

by Lemmas 5 and 6.
Consequently,

<A@, purau—pithy = (AW, paryu—uy+<{AW), u—pyuy)
< 4@ EX (R ullx+ M, EX(K)

=
< M, 1 Ef (K) >
which ends the proof.
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CONVERGENCE THEOREM. If 4 is a strongly monotone and -hélderian map from
a Banach space X into X*, K is a closed convex non-empty subset of X, {Xy, py, rJrco
is an approximation of X convergent on K, then a Jamily of solutions of Problem 2
is convergent to a Solution u of Problem 1, provided those solutions exist.
Moreover, there exists a positive constant M such that Jor every he®, b < b,
(hy defined by (4)),
[Pnun—ullx < MIEF(K), # = min[1, 3].

Proof. Since A is strongly monotone, then there exists a positive constant k
such that
k| psun—purauef < <A(prsn)— A(parsts), pust—pyrati .
= {An(un) v~ 1yt -+<{A @)~ A(DrT414) , Prttn—pururiy+
i +<AW), prrau—pry.
Taking into consideration that u, is a solution of Problem 2 and A is holderian,
we obtain from the above inequality and from Lemma 7
k| pwun—paryul < Lllul&LEF (KOP I pauts— prryul x + My EX(K)
for h < hy. : ‘
Since for every y satisfying the inequality ky* < ay+5 (k,a,b > 0) we have
¥ < afk+V/ bk, therefore

Where

1/2
Ipvin—prsale < LIIBEOP+ | 131, 50|
and by Lemma 6
lu—pruallx < fu—paraullx+lparsu—prsllx < MIEF(K)Jret-1i2,
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