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1. Introduction

In general, iterative methods for solving a nonlinear equation in R depend strongly
on the selection of the initial data. In order to reduce this dependence, the con-
tinuation processes use a family of equations

(1.1) H(x,t) =0, 0<t<1, xeR

which for ¢z = 1 contains the given equation. If for each e [0, 1] a solution x(¢)
of (1.1) exists that varies continuously with #, then the function x: [0,1] > R"
constitutes a curve in R between the—assumed to be given—point x° = x(0)
and the unknown solution x* = x(1) of the original equation. Hence iterative
processes may be considered which use the curve as a guide and channel their iterates
in its proximity from x° to the intended limit x*.

While the continuation idea jtself has a long history (see, e.g., [4]); its first
use as a numerical tool is often attributed to E. Lahaye ([6], [7]) and D. F. Da-
videnko (see, e.g., [11] for some translations and a lengthy bibliography). The
Davidenko methods are based on the observation that—under suitable differ-
entiability conditions—the unknown continuation curve is a solution of the initial
value problem )

d dx @ _ _ w0
1.2) [EC*H(X, ’)]?4'67}1("’ )=0, 0<z<1, x(0)=x"

Accordingly, we may approximate this curve by applying some discrete variable
method to (1.2). On the other hand, Lahaye’s iterative continuation approach uses
a locally convergent iterative method for solving (1.1) at an increasing sequence
of discrete parameter values t, =0 <t < ... < tm = 1. A step fxyy—1; may

* This work was in part supported by the National Science Foundation under Grant GJ-
35568X.
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be chosen such that, for instance, the last iterate at #; is a permissible initial approxi-
mation for the iterati(}n at fx,,. More generally, extrapolation may be applied
to obtain the nmext starting point.

In considering these approaches we distinguish two objectives: (a) The end
point of the continuation curve is to be found as quickly as possible while the curve
itself is of lesser interest; (b) the entire curve is of interest and is to be approximated
closely. ’

By nature, numerical methods for solving initial value problems—such as
(1.2)—are designed to approximate the entire solution curve within a given po-
tentially small, error tolerance. This points to the Davidenko approach if (b) is
our aim and suggests also that in connection with (a) the approach may waste
effort since more information is obtained than required.

In iterative ‘continuation, the main delimiter of the z-steps is the dependence
of the local method on the initial data; that is, larger steps are possible when the
convergence domains increase. Hence, iterative continuation might well be a suitable
choice for (a) provided only that a step-algorithm is used which adjusts to the con-
vergence behavior of the local iterations. Unfortunately, such algorithms do not
appear to be available. In fact, typically the steps are simply kept small enough
to ensure once again a close approximation of the entire curve; see, e.g., [5].

In this paper we present an adaptive step-algorithm for iterative continuation
in the case of objective (a). It is designed to adjust the z-steps according to estimates
of the local convergence domains and hence allows the process to move more
rapidly along the curve whenever the local method is less sensitive to the choice
of the initial values. Since effective, computable estimates for convergence radii
are rarely available, it is natural that here heuristic procedures play an important
role. As in various computer science problems, such heuristic techniques are proving
to be increasingly valuable tools in the design of complex numerical processes.

In Section 2 below the general process is described; then in Section 3 estimates
for convergence radii of several methods are discussed; and finally Section 4 contains
results of a number of numerical experiments. On the basis of our experience the
process performs very well in a wide variety of applications. In this connection,
my sincere thanks are given to Mr. Charles K. Mesztenyi for the implementation
of the procedures and for all his help in the computational experiments.

2. Description of the process "

Let-H: Dx [0, 1]€ R**! - R" be a continuous mapping with the property that
for each ¢ € [0, 1] the equation (1.1) has a solution and that the curve

Q.1 ’ ‘ x: [0,]]<D->R*

has the known starting point x(0) = x° and is at least ¢ (> 0) times continuously
differentiable. We apply some iterative continuation process and assume that it
has progressed through the parameter values 0 =f, <t; < .. <t <1, k= 0.
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Fork>1,let x, .., x* degote the terminal iterates of the local method at these
t-values, In preparation for the prediction of the next step, we construct, with some
as yet urispeciﬁed p = pr € [0, g), the interpolation polynomial

P
(22 Lk,p;t) = Z«pj(k,p; N3, kzp>0,
j=0
it
ke, pit) = ket 0:¢) = P
#ilk.p; 1) g —nn PEGD=1j=0,..p,
- 1£j
for which
(2.3) Lk,p;t) =x', i=kk—1,..,k—p.
Then the prediction error may be estimated as
249 %)=Lk, p; 1)} < LGk, p+1; )~ L(k, p; )]+ O(HEEY)

where A, denotes the maximal step taken so far. This type of estimate is frequently
used in the design of discrete variable methods for initial value problems. In [2]
a formula is given for the difference

E(k,p;t) = L(k,p+1;1)—Lk,p;t), k>p+1.

However, this formula appears to be incomplete, and we give here a new derivation.

From
) ® ? p+1
& = @k, p+15 )= g5k, p; 1) =[H(t—tk_:)]/[H(tk_,-—tk_,)], i=0,1,...p,
=0 =
\ i
it easily follows that
I—1y Lt~y t—t
8o = = L ;
o Pr— |8 R P ook, p; )
and
1
P =t ﬁ b=t
G—lepy o7 B~ ter o7 By —let
15
- I~k . . :
=~ amh, Pk r e k-1pin), j=1..p,
as well as -
t—1,
@ik, p+151) = — mk—ifpo(k»lﬁ Deptk—1,p; 1),
e

Hence we have

P
Ele,pi ) =3 05t gpuakop+151) =
j=0 .
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1—t p+1 " ]
=% ok, pst) | X~ _1(k—1, p; t)x*7|;
fi—trp_1 polk, p )[ ;‘Pj 1( k
that is,
-
@5 Lkp+130=L(Ep; 1) = ———polk, i Ol =Lk~ 1, p; ).
_p—

The go-term on the right is missing in the formula given in [2].

Assume now that the local method used for solving the equation (1.1) with
fixed ¢ has 2 convergence ball
2.6) B(x(),r®) = {xeR| Jx—x(®] <r®}, r@) >0.
In other words, for any starting point in this ball, the method generates a well-
defined sequence of iterates which converges to x(t). Moreover, suppose that 7(f)
is an approximation of r(¢) for small —# > 0. For example, if values r; = r(z),
j=0,1,..,k, are predicted during the local iterations, polynomial extrapolation
could be used to obtain 7¢(¢).. Since, in practice, the radii r; are relatively coarse
estimates of the r(%), it is advisable to apply only low order interpolation formulas
or to use numerical approximation. The simplest choice for Fi (), is, of course,
the constant 7.

For continuing along the curve (2,1) we wish to choose some step A = f;, ~1;
and apply the local process to the equation- (1.1) with ¢ = #;,, starting from

@27 0 = Lk, p; tue)- #

In [5), A is chosen such that [|x*+1:9—x(z, )] is (asymptotically) bounded by a given,
potentially small, error tolerance. This provides for a close approximation of the
entire continuation curve in line with objective (b) of the Introduction.

Here, in line with objective (a), we choose A subject only to the condition
that x**+1-° is in the predicted convergence ball B(x(fy.1), Fi(fk+1))- The (asymptotic)
estimate (2.4)-(2.5) of [x**19—x(#.. )|l then leads to the equation

h -
Ty P

h
l tk'_tk—p-l

forp =0,

2.8) 6F(t+h) = » %
H(1+ )Hx"—L(k—l,p;tk)ll forp>1,
y—1tg

I=1

for b = hy, with some factor § > O reflecting the uncertainty in the various estimates.

For constant #(f) = r, > 0, (2.8) is a polynomial in 4 which by Descartes’
rule of signs has exactly one positive solution. In practice, 7(f+#) is a low-order
polynomial in # which is positive for 2 = 0 and does not vary too much near zero.
Then, in general, there is still only one positive root. For instance, this is certainly
true if

_ I =Le—1,p5 8l

th) = —gxh, =0, o> o)
e
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In all cases, the desired positive solution # = A, > 0 of (2.8) may be found iteratively
starting from the previous step hy_;.

For p = py_, we see from (2.7) that the norm term in (2.8) is exactly the dis-
tance between the starting point x*° and the terminal point x* of the local iteration
at #;. More generally, the—assumed to be unique—positive solution of (2.8) depends
on p, and we may choose p = py such that & is maximal. In general, it is inadvisable
to change p at each step. Moreover if there is to be a change, only the values of %
corresponding to p = pg_;—8, 6 = —1,0, +1, should be tested.

It remains to be discussed how the convergence radii may be estimated for various
local methods; this will be the topic of the next section. Here we summarize the
general procedure as an informal program:

Lki=koi=p:=0,1,:=0 [Initialization]
2. If (k =0)then h:= Ay, go to 10
3. Solve (2.8) for b = h(py) [Normal 4 prediction]
4. If (k—ko < p;) then go to 9 [Test for p-update]
S. koi=k :
6. Solve (2.8) for & = A(px—1) and & = A(p,+1)
7. h:=max{h(p); p = px—1, pr, ;e +1}
8. pi 1= p-value at maximum in step 7 [Change p]
9. b= max (Anin, 0in(hmar, B)) [Next step 4]
10. g i= te+iy [Next z-value]
11, X440 = L(k, py, tyy 1) [Initial iterate]
12. Apply local iteration to (1.1) with ¢ = #,,, starting [Local metilod]

from x*+1+° and determine estimated convergence
radius rey -
Normal return: Convergence criterion is met for
final iterate x*+1:= x¥+1.7 g0 to 14
Error return: No satisfactory convergence, go to 13
13. if (I = hpiy) then error stop
else h:= 9k, go to 9
14. From local radii determine 7y ,(z)
15. If .y < 1then k:=k+1,goto 3

[No convergence]

[Reduce step]

[Test fort =1] .

The parameters Apey > Amin > 0, ¢ € (0, 1) and 6 € (0, 1] in (2.8) are given. Step 4
is an update criterion for p of a type frequently used with initial value problems.
The convergence criterion and the error return in Step 11 vary with the particular
method. However, the popular convergence test

1P =P~ < &y~ =p1=2] 45y,

for the sequence 3’ = x*+1-/ is often satisfactory.

g >0, &>0,
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3. Estimation of attraction radii
Let # denote the locally convergent process used in approximating the solution
x* = x(t) of the equation .
(3.) Fx=H(x,t) =0
for some fixed £. We have to determine r = r(#) > 0 such that (2.6) is a convergence
ball of #. Only few a posteriori estimates for such radii are known (see, e.g., [9],

[10]) and as mentioned before we have to rely heavily on heuristic approaches.
Suppose that # has the form

3.2) X+ = G,
where x* is a fixed point of G: Dg = R" —+ R" and that
(3.3) Gx—x*| € afx—x*||, VxeU,

Holds in some open neighborhood U = D of x*. Then any
(3.4) B(x*,r) < U,
is an attraction ball of #, and it follows by the triangle inequality that

3.5

Jj=0,1,..
a <1

r>90

rz |lx—x*| > T—%——a— |Gx—x||= % IGx—x|, VxeB(x*, r).

(See also [9].) Under the heuristic assumption-that the initial iterate x°.of (3.2)
is in the ball (3.4), the inequalities (3.5) provide simple lower bounds for r. Estimates
for « require, of course, additional assumptions about G. As-a simple example,
suppose that (3.3) is strengthened to

3.6) IGy—Gx| < ally—x[, Vx,yeU, a<]l.
Then
1G*y -Gyl

3. =—"—"-<a, Vyel, *,
3.7 9 Il S ye y#X
together with (3.5) provides the bound

- 1
3.8) r > max (—IIZ%’ —2~) |Gx~—x]f, Vx,y elU, y#x*

In practice, we may choose y as the iterate for which ¢ is maximal.
As an application of these estimates let # be the modified Newton method
for (3.1). For this assume that F: D = R* — R" is continuously differentiable and

(3.9 I1FG)—F' O < yly—xl,

For given x° e D such that F’(x°) is nonsingular, the iteration function now has
the form
(3.10)
Hence from

Yx,yeD.

Gx = x—F'(x°)"'Fx, VxeD.

1

Gy—Gx = —F'(x%)1 S [F'(x+t(y—x))— F'(x*)](y— x)dt

0
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it follows that
1

16— 6x1 < By {10 =10~y )y~ i

[

(3.11)

< 2 Byllx—20) + y—55[ly— =,

where |F'(x°)~!] < f. Therefore, for x° e B(x*,r) = D we require 28yr <1 to
ensure the contractivity condition (3.6) and hence the applicability of the bound
(3.8). On the other hand, (3.3) holds for 38yr < 1 and then (3.5) leads to the in-
equality )

$Byritr = |Gx—x|,

whence

(3.12) —2__._“ IGx—x||, VxeB(x*1).
: 14+ Y/ 1+6By|Gx—x]

From

IFGx| = |FGx— Fx—F'(x%) " (Gx—0)] < 2p[IGx—x°] + Jx—x°[1[Gx—x]
it follows that

176 1

IFxl Mol —x] < P7

Thus with (3.5), we obtain the necessary condition for x to be in the attraction
ball:

(3.13)

VxeD.

WGl jGx—x 2
I1Fx] [Gx—x°)+[x—x°] 3° ,
The lower bound in (3.13)—multiplied by a suitable factor—often represents a good
heuristic value for gy in (3.12).

If Newton’s method itself is used, then the following local convergence result
is valid.

TueoreM 3.1. Let (3.9) hold for the continuously differentiable mapping
F: D < R"— R If x* €D is a solution of Fx = 0 for which F'(x*) is nonsingular
then any
(3.15) B, =B(x*r) =D, r< BBy,
is an attraction ball of Newton’s method.

Proof. By the standard perturbation lemma it follows that F'(x) is nonsingular
in B, and

(3.14)

Vx € B(x*,1).

B =1FEH

(3.16) 1P < <38, VxeB,

___k
1—Bylx—x*|
Hence the Newton iteration function

Gx = x—F(xyFx, VxeB,
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is well-defined on B, and from

@17 Gx—x*| < [F ()| Fx*~ Fx—F' (x)(x*—x)|
1
< —1—_—/3—)7’%;?[77%—::*!!’ < afx—x*, VxeB,
and
'y p=t T 21, a=ppr<l
. 21-0 "7 ° ’

we obtain the result.
It may be noted that in [12] a corresponding result with the smaller radius

r < (1-1/y/2)(By)™* was proved.
Because of (3.17) the simple bounds (3.5) apply and take here the form

(3.19) r>2

l—¢ 1
D lx—Gx| Z—Z—Hx—lel, Vx e B,.

In order to improve this we introduce the quantity
(3.20) (%) = p[F'(x)"|x—Gx||, VxeB,,

which plays a central role in Kantorovich’s convergence proof of Newton’s method
(see, e.g., [8]). From

le—Gx]| < flx—x*[|+ [ F'(x)~ ||| Fx* — Fx— F'(x)(x* - x)|
< Ix=x*1+2[F @) x—x*|2,  VxeB,
it follows then that
2
= x— 2 ——————|x~Gx||, VxeB,.
3.2 r = fx—-x* > Y v ey flx~Gx xe
The analogous estimate )
I¥=>*] < lx—Gxl+[Gx—x*| < [x—Gxl| +Ly|F ()~ | Ix—x*|2, VxeB,
leads to the t;.rror bound of the Kantorovich theorem
2 1
3,22 —x* xR ad s rs = = 5
(3.22) fx—x* < PRY v lx—Gx[|, VxeB,, 0<1(x)< 5.

In order to obtain bounds for r itself, observe that
HF G = IF G < IF )~ —F )Y
< YIFO)IF G x—y,
that is,

1
YIF )™

1|
(3.23) y!IF’(y)'1||]<"x_y"’ Vx,yeB,

e ©
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and, in particular,

fx—Gxj
3.29) o‘——rx) —ri<ollx-x*|, VxeB, x# x*
This provides the bounds
[ 1 o 1
(3.25) lx—Gxj| <r < lx—Gx|l, VxeB,, x#x*

1+o z(x) l—¢ ()
and alternately, if (3.23) is used,

— h — /___
01/1 27(x) el < r < ¢ 2= VI=270)

(3.26) =) =) Ix—Gxff,
VxeB,, 0<(x)<i.
From '
3.27) 1FGx]| = |FGx—Fx—F'(x)}(Gx—x)| < 1Gx—x|* < Lo (x)] Fx|

and (3.16) we obtain

I Brix—cx*|

(3.28) |Gx—G2x|| = ||F"(Gx)~'FGx| < 5 W“l}x- Gx||, VxeB,

and hence the additional upper bound

1 ¢ 1 1
3.2 e o pu———| 0" N < ——[x—
. (329 r 710 269 Ix—Gx]| € 7 Ix—Gx||, VxeB,
with ¢ given by (3.7). A comparison of (3.29) and (3.19) shows that
S ,1-¢
2 1-0 g(x) T " 2=¢"
that is,
(3.30) o> 1—(14+49(x))"*2,  VxeB,

(3.31)

and thus g(x) < 2. A similar comparison between (3.21) and (3.25) gives
o= 1—(1+2z(x)) 12
Since by (3.27) we have

IFGx] _ _
7(x) = ZW = 7(x),

VxeB,,
this implies that | FGx||/||Fx|| < 2. These estimates for q and the ratio of the func-
tion norms indicate that B, may have to be restricted in order to avoid slow con-
vergence. For example, we might choose ¢ = 1—1/;/3 in which case 7(x) <2,
g(x) <1 and |FGx| < [|[Fx] for all x in B,.

The upper estimates in (3.25) and (3.26) remain valid if the lower bound T(x)
in (3.31) for z(x) is used. For the lower estimates of r we need an upper bound of
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7(x). In a variety of problems such bounds can be found. On the other hand, practical
experience has shown that the use of T(x) instead of 7(x).in the lower estimates
of (3.25) and (3.26) provides, in general; good and typically rather conservative
estimates of ». The reason for this rests with the fact that obvxously T(X)—7(x)
= O(lx—x*]), and by (3.24), lo]lx—Gx|/z(x)—r| = O({x—x*|) as- X — x* It
may also be noted that for quadratic functions in R' we always have z(x) = 7(x).
In view of the conservative nature of the estimates it-was usually found advantageous
to “overrelax” by working with some linear combination of the lower and upper
bounds for r. i -

4. Some pumerical -experiments

The adaptive continuation process of the previous sections has been applied to
a variety of problems. We present here a few selected results. All computatmns
were performed on a Univac 1108 system in single precision.

As a first 'example we consider the problem

1r. .1 _
Ny [sm(xlxz)—~ 57 %2 xl]
. Fx=1{ 1 : 6 f
“.Dn ) (1——4—;) (e 1—e)+ ?xz—Zex1
H(x,t) = Fx—(1—£)Fx°, x° = (0.3,4)T

found in [3]. The solution curve x: [0, 1] — R? of H(x, ) = O terminates at the
solution x* = x(1) = (0.299449, 2.83693)T of Fx = 0. This equation also has the
solution (0.5, 7)™ and, moréover, Newton’s method starting at x° converges to the
further solution (—0.26, 0.62)".

The results with the continuation process are given in Tablc 1 below (rounded
to four digits):

Table 1
Function- (4.1), Local Newton Process, 0 < < 1
Step Solution Predicted Radii Newton | Degree
| # | x4 rw | réoper- steps | - P
.01250 .01168 .3933 2.990 009432 009432 5 1
.02418 02165 3893 2.984 .005880 .01308 4 1
04584 04216 .3837 2.975 01147 .01418 3 2
08799 08158 3755 2.963 01767 02184 3 2
. .1696 1595 3637 2944 02620 .03239 3 2
. ..3290 3133 .3468 2917 .03786 04680 3 2
16423 3577%) 3220 2.876 05336 .06596 3 2
1,0000 —_ .2994 2.837 — — 3 2

%) step adjusted to reach f =
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In comparison Boggs [1] used a Davidenko technique with Euler’s method
as predictor and the trapezoidal rule as corrector. His basic method required 29
steps and an average of 6 evaluations of the Jacobian per step. In view of the objective
(b) pursued there, this is as expected.

As a second problem, we consider a quasi-linear equation of the form
4.2) H(x,t) = Ax)x—1b =0, 0<1<1,

where 4: D < R — L(R" is a given matrix-valued mapping. Equations of this
type occur naturally as discrete’ analogs of quasi-linear elliptic boundary value
problems. They also arise, for mstance in. the finite displacement analysm of mech-
anical structures.

" A linearly convergent process for solving (4.1) w1th fixed 7 is given by
“4.3) AN+ = b,
An attraction result for this iteration may be phrased as follows:
THEOREM 4.1. Suppose that A: D = R* — L(R") satisfies
14— 40l < Blx—y], Vx,yeD,
and that x* e int(D) is a solution of (4.2) (for fixed ty such that A(x*) is nonsingular

and

@4 Br?liebll <1, 5 =A™
Then any

4.5) B(x*,"\eD, r< ﬂj‘j;ii”

is an attraction ball of (4.2).
Proof. From (4.4) it follows that 4(x) is nonsingular and

4G €« —5— - ,3 , VxeB(x%r). B
Hence Gx = tA(x)"b is well-defined on the ball and the result follows from
(4.6) 1Gx—x*]| = || A(e*) ™ (4 (x*)— A(x)) A(x)~"2b])
< /i—?f%i;%” lx—x*|, VxeB@*r)

and o = 2|l /(1—pyr) < 1.

The result indicates that for increasing ¢ the radius » should decrease while
the convergence constant increases. This is a widely known phenomenon in connec-
tion with equations (4.2) arising in structural mechanics.

As an example, we consider the torsion of an infinite rod wﬂ:h square cross-
section descnbed by the boundary value problem

S GE )l S W] = v, G el = [0, 1x[0, 1,
u = 0on 39Q.

“.7
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We assume w to be constant, With a uniform subdivision of £ of meshlength
h =1/(m+1) and with the standard piecewise linear hill functions as trial func-
tions, the component equations of (4.2) in this case have the form

(4.82) Qv+ Q0w+ 0s+0e)Xiy— OnXi js1— O Xio1,;— OsXi,j-1—QeXier,; = B2,
L,j=1,2,...,m, xy = 0for (lh, kh) € 02

where
20y = q(4:C, j+ 1+ 4,6, )*)+4(Aei—1,1)>+ 4,0, ))?),

s 20w = q(As(G— 1,0+ 4,00, N?)+a(Aei— 1,72+ 4, (i~ 1, j— 1)?),
20s = q(4e(i—1, j= 12+ 4,0, j— D2)+q(deG, )* + 4,G, i-1)2),
205 = q(Ae(t, )*+ Ay(0, J= 1)+ g (A, 1>+ 4,1+ 1, /)?)

and .

@8 A0D = Gaam T AR = i),

Table 2 below gives some results for this function and the linear process (4.3):

Table 2
q(s) = €%, w=75, n=49, Linear Process (4.2)
e foer—t No. of Observed Pred. Degree

local steps o Radius P
.1000 0701 6 115 .364(—1) 0
1701 1042 10 325 245(—1) 1
2743 0323 20 .628 \867(—2) 1
.3066 0177 24 718 178(—2) 1
3243 0252 23 167 .304(—3) 2
3495  .0100* 23 835 .360(—4) 2
.3595 .0100* 15 861 .604(—5) 2
3695 .0100* . 13 .886 316(—5) 2
3795 .0101 8 914 162(—5) 3
.3896 0100 31 935 .330(—5) 3
.3996 — 66 989 592(—5) 3

239

* min step = .1

As expected by Theorem 4.1, we have approximately a linearly increasing convergencc
constant a.
The situation does not arise with Newton’s method. In fact, for the same func-

tion ¢ and parameters w, # we then reach 7 = 1 in four t-steps with a total of 20
local Newton steps.

icm®
AN ADAPTIVE CONTINUATION PROCESS 141
As a more stringent test for the behavior of Newton’s method as local process,

the following smoothed step-function ¢ was selected, representing a model for
some elastic-plastic material: :

4o for  5<0.15, 0513
4.9 4(s) = {3Go+9)+3(@1—9)(35—5) for 015<s<05,5= -’§—~
g, for s> 0.5.

A typical run with Newton’s method as local précess is given in Table 3.

»

‘Table 3
gof 49), go=1,4:=25, w=10,n=121,0< 1< 15
f A No. of Pred.
local steps Radius

.04 4(—1) 2 —_ No predictions made

.08 43(—1) 2 — Essentially linear range
128 576(—1) 2 —

1856 S543(—1) 7 J15(-1)

2399 293(—1) 6 A472(—2)

T 2692 .398(—1) 5 382(—2)

3090 429(—1) 4 214(—2)

.3519 524(—1) 5 335(—2)

4044 .603(—1) 6 375(—2)

4647 I371(-1) 6 439(—2)

(.5384 — 2 - Newton failure, A¢f = .589(—1)

5236 581(—1) 4 .108(—2)

5818 .643(—1) 4 129(—2)

.6461 1343 3 204(—2)
(.7804 — 3 —) Newton failure, At = .1075

7535 1786 6 310(—2)

9321 1841 4 .320(—2)
1.116 .2509 © 4 .304(—2)
1.367 1329 3 268(—2) Last step adjusted t0 fmax
1.500 — 4 —

It turns out that for fixed g the total number of ¢-steps and local Newton steps
is essentially dimension-independent. However, in our case if, say q,—¢, in (4.9)
increases, then the conditioning of F'(x*) worsens; and we should expect a slow-
down of the overall process. This was born out in all experiments. Some results
along this line may be found in [13].
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A FINITE ELEMENT METHOD FOR A TWO POINT BOUNDARY VALUE
PROBLEM WITH A SMALL PARAMETER AFFECTING THE HIGHEST
DERIVATIVE

JOHN J. H. MILLER
School of Mathematic:; Trinity College, Dublin 2, Ireland

We consider the following two point boundary value problem on the open interval
2 =10,11:
(1)  Given f, € L*(£) find u € H*(2) such that
—eu'+au ‘agu =f, inQ,
u(0) = u(l) =0.
Here the parameter ¢ is assumed to satisfy 0 < & < 1.

In the interests of clarity we restrict our attention in what follows to the (trivial)
case where ao > 0 2nd @, > O 2re constants. However the ideas may be extended
without difficulty to the (non-trivial) variable coefficient case.

It is known that.under the above assumptions as & — O the solution of (1)
converges weakly in L2(£2) to the solution of the initial value problem.

(2) Given f, € L*(Q) find u € H'(22) such that
- au +agu =fo inQ,
u(0) = 0.
We put ¥ = H}(Q) and we define the continuous bilinear and linear forms

a(o,w) = S (eo'w' +a,o'w+aow) VYo,weV,
2

f@={fo woev.

Q
The variational formulation of (1) is then:
(3) Find u € ¥ such that
a(u,v) =f(w) VoeV.
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