142 W. C. RHEINBOLDT

for solving differential-algebraic systems using implicit backward differentiation formulas, Proc.
of the IEEE 60 (1972), pp. 98-108. .

[31 C.G. Broyden, A new method of solving nonlinear simultaneous equations, Comput.‘]. 12
(1969), pp. 94-99.

[4] F. Ficken, The continuation method for functional eguations, Comm. Pure Appl. Math.
4 (1951), pp. 435-456.

[51 G. Hachtel and M. Mack, A pseudo dynamic method for solving nonlinear algebraic
equations, in R. A. Willoughby (Ed.), Stiff differential systems, Plenum Press, New York
1974, pp. 135-150.

[61 E. Lahaye, Une méthode de résolution d'une catégorie d'équations franscendantes, C.R.
Acad. Sci. Paris 198 (1934), pp. 1840-1842.

[71 —, Solution of systems of transcendental equations, Acad. Roy. Belg. Bull. Cl. Sci. 5 (1948),
pp. 805-822.

[81 .M. Ortega and W.C. Rheinboldt, Irerative solution of nonlinear equations in
several variables, Academic Press, New York 1970.

[91 A. M. Ostrowski, Onerror estimates a posteriori in iterative procedures, in Spline functions
and approximation theory, A. Meir, A. Sharma (Eds.), Birkhauser Verlag, Basel 1973.

[10] —, A posteriori error estimates in iterative procedures, SIAM J. Num. Anal. 10 (1973), pp.
290-298. . :

[11] L. B. Rall, Davidenko’s method for the solution of nonli operator equations, The Uni-
versity of Wisconsin, Mathematics Research Center, MRC Tech. Summary Rept. 948, October
1968.

[12] —, A note on the convergence of Newton’s method, SIAM J. Num. Anal. 11 (1974), pp. 34-36.

[13] W.C.Rheinboldt, On the solution of some nonlinear equations arising in the application
of finite element methods, in J. Whiteman (Ed.), Mathematics of Finite Elements and Applica-
tions, Academic Press, London 1976, pp. 465-482.

Presented to the Semester
Mathematical Models and Numerical Methods
(February 3-June 14, 1975)

BANACH CENTER PUBLICATIONS
VOLUME 3

A FINITE ELEMENT METHOD FOR A TWO POINT BOUNDARY VALUE
PROBLEM WITH A SMALL PARAMETER AFFECTING THE HIGHEST
DERIVATIVE

JOHN J. H. MILLER
School of Mathematic:; Trinity College, Dublin 2, Ireland

We consider the following two point boundary value problem on the open interval
2 =10,11:
(1)  Given f, € L*(£) find u € H*(2) such that
—eu'+au ‘agu =f, inQ,
u(0) = u(l) =0.
Here the parameter ¢ is assumed to satisfy 0 < & < 1.

In the interests of clarity we restrict our attention in what follows to the (trivial)
case where ao > 0 2nd @, > O 2re constants. However the ideas may be extended
without difficulty to the (non-trivial) variable coefficient case.

It is known that.under the above assumptions as & — O the solution of (1)
converges weakly in L2(£2) to the solution of the initial value problem.

(2) Given f, € L*(Q) find u € H'(22) such that
- au +agu =fo inQ,
u(0) = 0.
We put ¥ = H}(Q) and we define the continuous bilinear and linear forms

a(o,w) = S (eo'w' +a,o'w+aow) VYo,weV,
2

f@={fo woev.

Q
The variational formulation of (1) is then:
(3) Find u € ¥ such that
a(u,v) =f(w) VoeV.
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We now construct a discretization of (3) by the finite element method. Let

the parameter # > 0 and the natural number N be chosen such that Nk = 1. Let
N

{x;}% be the nodes x; = jh and let @ = UJ K; where K; = [x;_;, X;]. For each
1

fixed ¢ > 0 we associate a unique 6 = 0(s) 'satisfying:

abh

and lim——— =1.
-2

)] 00«1, %

lim§ =0
&0
‘We then construct a finite element subspace ¥* = V*(¢) = V in the following manner.
For each K;, j =1, ..., N, we write
K; = Ky UKj

where

Ki = [x_1, %1400, Kf = [x.1+0h, x}]
and we define

VE = {o* e CO@)| ole; € Py, 2"lxj € Po, 1 <j< N, 0*(0) = o*(1) = 0}.
Here P, denotes the space of polynomials in one variable of degree < k. It is easy
to see that for each s> 0, ¥* = ¥ and dimV* = N—1. Putting v; = o*(x)),

j=0,...,N, the degrees of freedom of any 9" € V* may be taken as {o;}{~* and it
is not hard to see that

N—

@) = Y op®
=1

i

-

Vxel

where the basis {g;}¥~! is given by

(e—x;_1)/0h for xeKkj,
1 X for xeKkjf,
@i(x) = _
| (xj+0h—x)[6h  for xeKj,,
lo otherwise.
' The discrete formulation of (3) is then taken as i
(5) Find «* € V* such that
a@, o =f@") Vo'eVh
It is easy to see that (5) is equivalent to
(6) Find (uy, ..., uy_;) € R"~* such that
: N-1
Za(wk’q)])uk =f(q’j)’ j=ls"':N_1'
=1 i

If we now use the trapezoidal rule in the subintervals Kj and Kjf,j =1, ..., N,
for evaluating the integrals approximately, it is not hard to see that (6) then gives
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( 0h+2)u’“+(ﬂh +aoh)u,+( o 2)z.z,_1

0] = B ({01 +0R) ()2,

I1<j<N-1,
u, = uy = 0.

In the limit when 6 = 1, (7) is the usual central finite difference scheme for (1)

e Ujy1— 2y Uyy I e
2 1 2h

@® 7 +aou; = f(x),

1<j<N—1,

uy = uy = 0.

. On the other hand in the limit when & =0 and thus 8 = 0, because of (4), (7) be-

comes the upwind finite difference scheme for (2)

P i = R f(x;_1)2+f(xj)
® h )
u, = 0.

, I<j<N-1,

A particularly interesting intermediate choice for 6 is
(10) 6 = (tanha, h/2e)[(as hj2¢).

1t is easy to check that the 6 defined by (10) satisfies (4), and that for this 8 (7) be-
comes

ash ash wjo—2uj+u;_ Ujy1—Uj
1h o in Bt B J+jl+a1 41— U1

2 % » oty

an (RN L0 i) NP
2 s = ~= 2

Uy =uy =0

which is the finite difference scheme introduced by A. M. I'in in [1] (apart from the
inhomogeneous term which is simply f(x;) in his paper).

For each fixed ¢ > 0 the solutions of (8) and (11) have at the mesh points
O(h?) convergence as i — 0 to the solution of (1), which is not however uniform
in ¢; the smaller ¢ is the larger the error constant becomes. The importance of (11)
is that its solution has at the mesh points O(#) convergence as # — 0 to the sol-
ution of (1) which is uniform in € for all & > 0. This also is true in the limiting case
& = 0, since the limit of (11) is (9) whose solution has at the mesh points O(h) con-
vergence as A — 0 to the solution of (2).

We have thus constructed finite element subspaces of continuous functions
that are piecewise polynomials of alternating degree zero and one. These lead to
finite difference schemes, of which special cases are the central finite difference
scheme and Iin’s finite difference scheme.

1f is known that the upwind finite difference scheme (9) is obtained from finite
element subspaces of completely discontinuous functions that are piecewise constant.
The limit subspace when ¢ = 0 of the finite element subspaces V" constructed above
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is also the space of completely discontinuous functions that are piecewise constants,
with discontinuities at the nodes {x;}§~*. It is not hard to show correspondingly
that a natural limit when & = 0 of the discrete variational formulation (5) above
is a special case of the formulation of Lesaint and Raviart [2] of completely dis-
continuous finite element methods for ordinary differential equations.

Completely analogous results hold if we assume that ao > 0 and a; < 0. The
same idea also works for variable coefficients. There is an obvious extension to
problems in two dimensions if the shapes K; are rectangles.

In a subsequent paper we establish error estimates in the maximum norm
for our finite element method, which hold at each point of 2 and which predict
correctly the superconvergence results for uniform rectangular shapes of Lesaint
and Raviart in the limit when & = O for this special case.
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SOME EQUILIBRIUM AND MIXED MODELS IN THE FINITE ELEMENT
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1. Introduction

The variational formulation, used in the finite element method, is based mostly
on the minimum of potential energy. As a model problem, let us consider the second
order elliptic equation

é .Ou
(1.1) o (au(X) )+ao(x)u fy xefQckh,

with the following mixed boundary conditions:

u=1u, onl,,
(ll)’ a,-j—a—x-j—‘vi =g on I',, -
ou
aij-a—xjvi-l—au =g onl,.

Here the repeated latin index implies summation over the range 1 till » and the
boundary 82 = I' of Q consists of four mutually disjoint parts

I'=Twlh,ul,uZ,

where ezch of I, Iy, I, is either open in I" or empty and the (n—l)—dimeﬁsional
measure of # is zero. v denotes the unit outward normal to I". Assume that the
cocfficients a;;, a,, « are bounded measurable functions,

ap(x) =0, a(x) > 0 (almost everywhere)

and that a positive constant ¢, exists such that

ag(x)tgtj Zcolity Yte R"

hold$ almost everywhere on £ (a.e.).

.
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