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is also the space of completely discontinuous functions that are piecewise constants,
with discontinuities at the nodes {x;}§~*. It is not hard to show correspondingly
that a natural limit when & = 0 of the discrete variational formulation (5) above
is a special case of the formulation of Lesaint and Raviart [2] of completely dis-
continuous finite element methods for ordinary differential equations.

Completely analogous results hold if we assume that ao > 0 and a; < 0. The
same idea also works for variable coefficients. There is an obvious extension to
problems in two dimensions if the shapes K; are rectangles.

In a subsequent paper we establish error estimates in the maximum norm
for our finite element method, which hold at each point of 2 and which predict
correctly the superconvergence results for uniform rectangular shapes of Lesaint
and Raviart in the limit when & = O for this special case.
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1. Introduction

The variational formulation, used in the finite element method, is based mostly
on the minimum of potential energy. As a model problem, let us consider the second
order elliptic equation

é .Ou
(1.1) o (au(X) )+ao(x)u fy xefQckh,

with the following mixed boundary conditions:

u=1u, onl,,
(ll)’ a,-j—a—x-j—‘vi =g on I',, -
ou
aij-a—xjvi-l—au =g onl,.

Here the repeated latin index implies summation over the range 1 till » and the
boundary 82 = I' of Q consists of four mutually disjoint parts

I'=Twlh,ul,uZ,

where ezch of I, Iy, I, is either open in I" or empty and the (n—l)—dimeﬁsional
measure of # is zero. v denotes the unit outward normal to I". Assume that the
cocfficients a;;, a,, « are bounded measurable functions,

ap(x) =0, a(x) > 0 (almost everywhere)

and that a positive constant ¢, exists such that

ag(x)tgtj Zcolity Yte R"

hold$ almost everywhere on £ (a.e.).

.

[147]
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We shall consider the Sobolev spaces W* 2(Q2) of functions whose derivatives
up to the order k (in the sense of distributions) exist and are square-integrable
in Q. The norm in W*?(Q) will be denoted by

e < [ Y3 § @wpax]”,

|i[<k 2
Wo2(Q) = L,(D).

Let Q be a bounded domain with a Lipschitz boundary. (See e.g. [1] for the
definition of a L. boundary) We introduce also the subspace of “test functions”
V={ov|ve W2(Q), v =0onl,}

and define the potential energy
LW = %((lh u))—'F(u)a

du ov
((u, ﬂ)) = DS (aij“a-x';a; +aouv) dx+ IS oawodl,

F@) =\ fuax+ § gudr.
2 Tgol,
Assume that

feL,(Q), u,eW: (), geL,(I,ul,).

According to the principle of minimum potential energy we recast the “classical”
form (1.1), (1.1)" of the problem into the following variational form:
(1.2) Lw) =min, wueuy+V = {ul u=u+v,veV}.
L, =9, we set up = 0.)

It is well known that if a,(x) > @, > 0 a.e. or if [,UI', = @ with «(x) > ¥ > 0,
there exists precisely one minimizing element . Moreover, it holds

(w,2)) =F@® VoeV,

and u is reffered to as a weak solution of (1.1), (1.1)'.

Sometimes we are more interested in the cogradient-vector

ou .
du-é;j- > l=1,...,n,

than in the solution y itself (stress components in the torsion problem, heat flow,
velocity in the seepage a.s.0.). If this is the case, we may proceed in three ways:

(i) to find an approximate solution of the problem (1.2) and to evaluate the
derivatives (Compatible models of finite elements);

(ii) to apply a dual variational formulation, called the principle of minimum
complementary energy, which yields an approximate cogradient directly (Equi-
librium models);

(iii) to apply a mixed variational formulation (based on a principle of Hellinger—
Reissner type), enabling us to obtain approximations to both the solution and its
cogradient simultaneously (Hybrid or Mixed models).
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In the sequel we discuss the equilibrium models and a particular mixed model,
deriving some error estimates.

In Section 2 the case of a strictly positive coefficient a, is considered, when
the subspaces of “equilibriated” finite elements are easy to construct and the con-
vergence theorems are based on some results of J.-P. Aubin and H. Burchard [2].

Section 3 is devoted to the case a, = 0. Using piecewise linear polynomials
on a triangulation, the convergence of order O(A?) is proved by means of a suitable
projection operator.

In Section 4 we establish a kind of a mixed model, which is based on a new
variational formulation of the Dirichlet boundary value problem. An error estimate
is also derived.

2. Equation with an absolute term

In this section we assume that an “absolute term” @ou occurs in equation (l.1),
the coefficient g, being strictly positive, ie.,

a(x)za, >0 ae inQ. .

First we derive the functional of complementary energy by means of the Fried-

richs transform (see [3]).
Define

Q1) i=1,..,0, N1 =1u

n= 5—961—’
and rewrite the problem (1.2) in the form

L W) = LU N15 -5 1)
= 3§ @ymmy+aonz e +1 Sawrdl— (fuds— | gudl"

Q I Q Iyols )
Let us regard conditions (2.1) and the boundary condition on I, to %; jointly
as side-conditions (constraints) by means of Lagrange multipliers Z4i(x), p(x).
Thus we obtain the functional

H(u, Nis )‘J’ /‘j)

- 2atw i+ §[ (2 )+ At |+ utamsar.
Q

Tu
Integration by parts yields
Sl;gu—dx - - Sudiv).dx+ S AwudT,
8 Xi 2 r

where

o
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Taking the variations with respect to #;, u only, we obtain

6,11,"3? = S(ﬂij’?i5771+ao’7n+1 0Npra)dx+
2

+ §owuar— (fouas— | goudr+
Ty Q Igwly
4§ =000 Ay O — iV A~ Bt Ay Bl et
fol
+ Sududr+ §a;dudr.
r

Tu

Setting
6,,1',,.9? =0,

we deduce the following conditions:
2.2) aymi =24, j=1,..,n,

AoTner = Anyr  In 0,
(2.3) ) Anpy = diVA+f in Q,
(-9 Avi=g only,
.5) : Avitou=g onl,,
(2.6) . Avi+u =0 onl,.

Eliminating #;, u, p from the functional # by means of (2 2) till (2.6), we
are led to the functional

QT LiCs s uyr) = -3 § (Bis du dy+bo A2, ) d—

—1 § ot (n—gprdr+ Szmuodr,
s Ty
where by; are the entries of the matrix [a]~, b, = ag.
The functionzl &, has to be considered with the side-conditions (constraints)

(2.3), (2.4). Condition (2.3), however, suggests to eliminate also A,,,, which yields
a new functional .

(28)  F2llases de) = %S[bg,lil+bo(d1vl+f)2]dx—

-1 S a~ (A —g)2dl+ S Avuodl.

I'v Tu

According to the general concept of the Friedrichs transform; we may expect that

&, = max over Aa}.,—-ag, a&u i=1 é...,n),
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where A is an appropriate set of admissible vector-functions 4, satisfying (2.4)
and u is the solution of the problem (1.2).

Let us verify the latter conjecture. To this end, we shall distinguish two cases:
O I, =49, (i) I, # 9. Here we study only the easier case (i); the case (ii) requires
some more mathematics, which can be found in the paper [4].

Henceforth we assume that I, =, *42? Define

' : B s @,

and the bilinear form

(2.9) Oy M = § iy B2 +B0 Bya 1) dx
Q

on Hx H. The coefficients bij, by are bounded and measurable. Moreover, by; = bj;
and there exists a positive constant ¢; such that
n41

JAlE = (L Da > e Y 1403
i=1

Consequently, (2.9) is a scalar product and H with (2.9) is a Hilbert space.
DEFINITION 2.1. Define

B(A,0) = S (l;% +Z,,+117)dx Vie H,oe W2(Q),
2

H, lieHleeV).i-—a,ja i=1,. ’n)]E).=).(w),
Any1 =G0
H, = {AeH| B(1,9) =0 VoeV},
g = {AeH| B(A,0) = F(¥) VoeV}.

Remark 2.1. We can give a mechanical interpretation of the sets introduced
above:
H,—stresses compatible with virtual displacements,
H,—virtual stresses,
Ay, , —statically admissible stresses.
Any vector 1 € Ay, satisfies (2.3), (2.4) in the weak sense (in the sense of the
principle of virtual displacements).
THEOREM 2.1 (Principle of minimum complementary energy). Define
F (B = 311— 2wl
Then ‘
SN =min, Aeds,
if and only if
A= i),

where u is the solution of the problem (1.2).
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1t holds
— & (AW) = £ @)+ F (uo)— 11 A(uo) 13-

Proof. The proof is based on the fact that H, is orthogonal to H,. In fact
let A€ Hy, ' € H,. Then we have

(4,4 = S[bij(aik—av“ AWaboagoiyy, | dx
K Oxy[xy3 - )

]

80 . "
= S(%}- o ,.+1)dx=B(}. ,0) = 0.
2

Next let us set u =u+w, we V. Then A(w) € H;. Secondly, A—A(w) € H,
for 2ed;,,. In fact, note that

B(Mu), v) = ((u,%)) = F(o)
Consequently, for 1 e 4,, ¢ We may write :
14— 2@o)lE = 12~ 4@+ AW - Al = 12— A@IE+ 12 W)Z

and the assertion of the theorem }'ollows.

Remark 2.2. We can prove that H, and H, are closed subspaces of H and
H = H;®H,. Thus the principle has an obvious geometrical meaning:

YoeV.

M

A(w) is the orthogonal projection of A—2(uy) onto the subspace H; .
Remark 2.3. Let us derive a “classical version” of the principle. Taking » = ¢

€ CP(D (ie., an infinitely differentiable function with compact support in )
in the definition of Ay, ., we obtain

8
Aeds, = Szia—zdx= S(f—l,+1)qux Yo e C&(Q).
Q Q

e ©
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We may define the operator divA in the sense of distributions:

S}.i%dx = - Sq)djvldx Vo e C§(9Q).
Q n

By comparison we conclude that

(2.10) AeAny = divh = Ayyy—fe Ly (D).

Consequently, for A€ A,,, we can also define a functional A, e W-12:2(I"y by

means of the relation

o )
@.11) v, yo) = QS(li—ax—i +vd1v2)dx,

where yo denotes the “trace” of a function v € W+2(Q) (see e.g. [1] for the concept
of traces).
From (2.10) and (2.11) we obtain
Oug

(A Ao))u = QS (lia—xi +nsy uo) dx

- S(li%+uoﬂvl+uof)h = Chony yaod+ | fude.
B i 2

Next assume that the functional 4,7, is represented by a function from L, (I"), which
is equal to g on I, ie,
$hgvi, prio) = S Apviyugdl+ Sgyuodf.
Iu ! Iy

Then a comparison with (2.7) yields that

P (1) = M= Cvs, oy — § fuod+ 214 (o) I3
fol

= Halz— § AviuodD+# (f, g, ) = — (D +F (£, 2, 10),
I

u

. the term & being independent of A.

The formulation
—&:(A) =min, led,

represents a more “classical” version of the principle. Our version, however, is more
general, because no additional assumptions are included. m

Having numerical methods in mind, we shall replace the affine ahyperplzme
Ay, by the sum of a particular element 1° € Ay, ¢ and the subspace H,, i.e., we
set

Af' g = 2.0+H 2.

Then we write for y € H,

S =LA+ = Hz+E = Lxlz+G, Da+21313,
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where
1=10—Au) .
is a fixed vector.
Hence the equivalent version of the principle follows:

@ ()
if and only if

= Lxl3+ G, Dg = min, yeH,,

% = Aw)— 2°.

As in the derivation of &,, we may exploit the particular form of (2.3).
From (2.10) we know that

xeH, = oo =divy = gy € Ly(Q)
and for x;»; € W-12-2(I") we have, by virtue of (2.11),

<Xi'”i9 '})v> = S(x:ai::“ +7"Xn+1)dx = B(x’ 'D) Vo e Wl'z(‘Q)s
o i

1eH, = {ur,yv) =0 VYoeV.

Write
2 = (il: ey En)

and introduce the spaces of “reduced” vectors
(2.13) 0 = {z] 7 [L,@)", divy e L(D},
(2.14) Qo = {71 X€Q,{iri,yo> =0 Vo eV}

It is easy to prove that
[25Q0=>X = [Z1, -

re€Hy =2 = [f1s ...

Let us introduce

e 1g

s 1. divyl e H,,

@15 Zos VI € Ha

s An> divzl, % € Qo

= Guriay +bodivydivy)dx
Q

on 0 x Q. Then, obviously,

(2.16) lxlg = G 25 = CZ lzlly  VyeW2@)r.
i=1 .

COROI‘LARY (Equivalent version of the principle of minimum complementary
energy). Let us define A° = {23, ..., A%} and
v = $EI3+ @ 1+ § bof divgds— (T, uod;
Q
then
(2.17)

() =min, yeQ,,

e ®
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if and only if .
x= ey s Xnr divyl = A()—2°,
where u is a solution of (1.2).

Proof. 1. We have
2 =[x divgl = Do(y) =
2. The difference A(x)—A° can be written in the form
Ay—2° = [x, divyl, % €Qo.

In fact, from the definition of the weak solution u it follows that A(¥)—A° € H,
(see the proof of Theorem 2.1) and (2.15), holds.

Consequently, the problem (2.12) can be considered on the set of y = [, divy],
where y€Qp. W

To define a Ritz-Galerkin procedure with finite elements, we shall assume

that a family {V,} of subspaces (finite-dimensional) ¥ exists such that for any A,
0 < h < 1, the following conditions are satisfied:

where

(A1) Vi © Wh2(Q),
(A2) an integer » > 2 and a constant C exist, independent of 4 and such that
Voe W*2(Q) v, eV, |vs—vl; < CH*|ol,.
Writing
Vik) = [Vl
we have
Vih) = [W-2@) < 0.

Remark 2.4. The well-known spaces of piecewise polynomial functions defined
on a simplicial partition of a polyhedral domain Q satisfy (Al) and (A2). For
example, the linear polynomials correspond to » = 2, and cubic to » = 4.

Let

Vo(h) = QonV(h) = {x| x e Vi, xovi = 0 on I},
We say that y* e Vo(h) is a finite-element approximation of the problem (2.17) if
(2.13) v} = miny(y), xeVolh).
THEOREM 2.2. Let I'= T, and let the boundary I be sufficiently smooth. Setting
0 ={0,....0,f} = 1" 2) = {L(w), ..., H(u)}, we have
Lim |4 —A(@)lle = ©.
P

If A() e [W**(Q)]", then
17 -A @l = CIr* Z TGl

Proof. The crucial point consists in the following lemma (Aubin, Burchard
[2]): if the boundary is sufficiently smooth, then [C=(Q)I" is dense in Q.
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As Iy = @, we may set Qo = Q, Vo(h) = V(1), V = W§*(®). From the above-
mentioned density we deduce
Ve > 03pe [Co@)), A —gle < /2.
Assumption (A2) yields

n n
VhigeV(), Y let—pili < CFY ) il
i=1 i=1

because g € [W*2(Q)]".
Consequently, using also (2.16), we have

(2.19) Ve > 03k, Vh < hydgphe V(R),

136~ ¢"lly < 136 —pl+lo=g"l, < &2+ C:H 1Y Igil < o

i=1
Now (2.17) results in -
A@,pu)e=1w) Yue@>VH),
and similarly (2.18) in ‘ :

(" e = 1) Vuev®,
where

I(w) = — Sbofdiv,udx+(ﬂﬂ'n o).
P .

By subtraction we obtain

(-2 p)a=0 Vupev®,
i.e., A* is the orthogonal projection of () onto V(). Therefore
(2.20) 12@—2le < 12@)—~plle  YpeV(E.
Finally, from (2.19) and (2.20) it follows that

I126)— e < 126)—¢"le < &

If Aw) e [W*2(Q)]", we need not the density in @ and the assertion of the
theorem is an easy consequence of (2.20), (2.16) and (A2). m

Now let us consider the case I}, # @ and restrict outselves for brevity to plane
problems on a polygonal domain 2 < R2, Assume that the subspaces ¥} are con-
structed by means of triangulations J, of 2, which satisfy the following require-
ment:

(B1) If a part of I, belongs to a side of a triangle K e 77, then I, covers the
whole side.

Let us find 1° € A,. (Choosing a 2% Q such that A» = g on I, we set
Ayy = diva®+f)

Define

V= Qon [P,

and denote by ¥°2 the closure of ¥ in Q.
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THEOREM 2.3. Let the subspaces Vi, be constructed by means of Lagrange or
Hermite interpolation on triangulations T, satisfying (B1).
If 2w)— ° € 70, then the finite-element approximations 1°+* = A* converge
inQ to (), ie.,
lim 17)— 2o = 0.

If A(w—A°e ¥, then

2
1A=~ lo < CH* Y 1A= 2. -
i=1

¢ .
Proof. The fact that ¥ is dense in 7@ yields that
2.21) Ve>03pe?, I-opl,<e2, 7°=2@—1
Using the Lagrange or Hermite interpolation on triangles we construct a linear
mapping (see e.g. [}, [6])
re L(W Q) Vy)
such that
(222 loi—rgils < C Mol (=1,2),

where C is independent of % and ¢;.
Moreover, we have

pe¥ =rng= (Ta@1, ") €Do.
In fact, e.g. for the Lagrange interpolation, we have
. pe¥ =gy =0 onl,
because ¥ < [F**(Q)] = [C()]? holds for x > 2
At the nodal points of I'; we have
0 =g = (rh‘Pi)"’l;
consequently
()i =0onl,=r9eQ0o.
An analogous approach is applicable in the case of the Hermite interpolation.
Thus
e € Qon[Vil2 = Vo(®).
By virtue of (2.16) and (2.21), (2.22),
1Z°=molle < [7°=gllotlp—riple < &

holds for sufficiently small A.
As 4" is the orthogonal projection of Z° onto Vo(h) in Q (cf. (2.20)), it holds

12— Ao = 17°—2"le < [Z°-olle <&
If %° € ¥°, we may set ¢ = %° in the above proof.
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Remark 2.5. A comparison of numerical efficiency of both the primal method
(with compatible models) and the dual method (with equilibrium models) can be
found in [7]. It results in favour of the dual method.

Remark 2.6. In parabolic mixed problems, the role of the “absolute” term is
played by the time-derivative du/oz.

A conjugate variational formulation can also be established and utilized, yield-
ing efficient finite element procedures for computing the cogradient vector, see

8], [9].

3. Equation without an absolute term

Let us consider equation (1.1), where a, = 0 and let I, = @; I, # @. Using the
Friedrichs transform (without the variable 7,,,), we again derive (2.2), (2.4),
(2.5), (2.6), but instead of (2.3) we obtain

.3y divd+f=0.
We are led to the variational problem
F3(A) =max, A=(I,..,4)ed
where
.SP:,(}.) =& 1Ay es Ins 0)

and A consist of vectors which satisfy (2.3) and (2.4).
To analyze the latter problem, we introduce (see [4]) H = [L,(Q)},

@, ¥g = \ by 22y dx,
2
so that

13 = (o D = ¢ ) [4il3
i=1

and H is a Hilbert space. .
Then we introduce (cf. Definition 2.1)

B(,v) = Sﬂ.ig”—dx,
& i

H, ={16‘H] dveV, i =aij—:% i=1,..,m=1=1(0), ‘
H, = {ie H| B(l,v) =0 Vo eV},
dsg = {Ac H| B(1,v) = F(¢) Yo eV}.
TrEoREM 3.1 (Principle of minimum complementary. energy). Define
SRy = 3=y

- ©
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Then . )
P =min, Aeds,,

if and only if A = A(u), where u is a solution of (1.2).

Proof is similar to that of Theorem 2.1. .

Introducing a particular fixed A° € Ay, ,, we derive an equivalent version of the
principle:
@1 - Bo(y) =jlxla+(x, Ay =min, yeH,,
if and only if g = A()—A°

Let a family {S,}, 0 < k< 1, of subspaces Sy < H, be given. We say that
o €Sy is a finite-element approximation to the problem (3.1), if
Bo(r") = minPo(7),

In what follows, we show a possible construction of Sk, using piecewise linear

where 4 = 2°—A(uo),

(32) % € Sh-

Sfunctions. E .
For simplicity, we consider plane polygonal domain £ < R>. (For an extension

to R", see [10].) First we introduce a projection mapping on a’single triangle K < 2.
Write : ) .
W(K) = [W2(K)P, CK) = [CKF,
and denote by P;(M) the space of all linear polynomials defined on the set M.
Let a,,a,,a3, Ga = 41 be the vertices of K, »® the unit outward normal to the
side @1 @41 -

For A € W(K) we define the “outward flux”

Tid = lﬂ";‘i)]ﬂ—ﬁ:ﬂ- }

LemMA 3.1, Let oz, f: € R* (i = 1, 2, 3) bé given. Then precisely one A € [P1(K)I*

exists such that )

TiMa) = o5, TiMaisr) = B (i=1,2,3.m

Henceforth we shall use the notation

S wods = [u, ol
et

and the basic linear functions w{?, o € Py (@@ ) of the side @ia;,,, for which

o (@) =1,

m(zi)(al) =\03
Let us project each T;4 onto P;(@a;.() in L,(a;a;+,) and ﬁnd the correspond-
ing vector A€ [P;(K)]>. Thus we obtzin a maping I7; more precisely, we bave

THEOREM 3.2. Let A € W(K). Then the equations

* [T:4, 0 = afof, of’l+Ailof, 0fk

wg‘)(qu) =0,

(D(zi) (ai+1) =1

(k = 1’2)5
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T (a) = o,
T IA(G141) = Bis

with i = 1,2, 3, define a mapping
ITe (W K); [PL(RPPINZ(C(K); [Py (K)lz)

(%)

Moreover,

6
M ew <€ ——

Al
V2 e

YieCK),

where o is the minimal angle of K.
For the proofs of this and the following results, see [4]. m.
Let us define

A (K) = {ie [Py(K)P, diva = 0}.
It is easy to find that dim.#(K) = 5,

aw={(o) () (S o) (2}

Lemma 3.2. Let A € [Py (K)P. Then

3
le A E) "; (u+B)L =0,

where o = Ty Map), Bi = Ty Mas11), I is the length of @,
THEOREM 3.3. Let IT be defined by means of (*), (+). Define

UK) = {Ae W(K),divi = 0}.
Then
ITe £ (UK); # (K)),
Ii=1 Viel[P (K
If & € [C*(K)P, then

1i—Ilea < (1+ 6‘/2)1: (J—

where h = diamK and « is the minimal angle of K. m
Let us consider a triangulation 7, of Q. Write

h = maxdiamX,
Kedy

and let JIy be the mapping defined on K e 7, by (+), (#+). In order to glarantee

the continuity of fluxes across each common side of two adjacent triangles K, K' € 7,
we introduce the following

‘ConprTioN (R):
Tk A+Ty,xd =0
holds on each common side of any two adjacent triangles of 7.
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Here T, x4 = A4pP(K) and Ty, pd = ApPK), v(K) = —v (K.
Define

U@ = {ie [Wl'le)]z, diva =0},
Nw(@) = {4} Mze #(K) VK e Ty, A satisfies condition (R)}.

Remark 3.1. Any A € /() satisfies the equation divAd = 0 in & in the sense
of distributions.

For 4 e U(L2) we define a mapping r, as follows:

(g =1IgA YKeT,.
TuroreM 3.4. Let {.7' »} be a regular (U), family of triangulations. Then
n e Z(UQ); #(D),

Col?|Aliear Vi e [CHAP,
where Cy is independent of h and 1. m

Let now {77} be a regular family of triangulations satisfying also the require-
ment (B1). We define

Sy = N2 (@QNH, = {Ae (@) Av; =0o0nTy}
and denote by %° € H, the element for which
Do(2°) = minPy(y),

THEOREM 3.5. Let #° [C2(@D)]>. Then

12°= e < CR212 Jrcrap
(where y* is defined in (3.2)) holds for any regular family of triangulations.
COROLLARY. Let the suppositions of Theorem 3.5. be satisfied. Setting
049° = Aw), A+ =14

1AG) — 2 = OG).

Remark 3.2. If A° € A;, is not available, we may replace it by an approxi-
mate A which corresponds to a piecewise linear interpolate of g on I’,. The same
error estimate can be derived.

Remark 3.3. A posteriori error estimates. Suppose that we have attacked the
problem from two sides:

(i) by the primary method, using a compatible finite element model, which
yields an approximation

2= Arr.ore <

1€ H,.

we obtain

U €U+ DVps, D EVipr < V;

(ii) by the dual method, using the equilibrium model described above, which
yields
e Sy,

(4) The family of triangulations is regular if a positive «o > 0 exists such that 1;lJf gm; o> o,
€y

L L A0 eds,.
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THEOREM 3.6. The following estimates hold:
Cllue—uly < 4@+ A@)la < 12 @e)— 4,
CIV = A@)lezaor < 14 =20)la < 120)— Ala-
The proof is an immediate consequence of the equation
12 () — A% = 12 Gur) — 2EIE+ 12— A 1F-
The case ao > 0 can be treated in a similar way (cf. also [2]).

4. A mixed finite element method close to the equilibrium model

For the Dirichlet problem with constant coefficients, we present a new variational
formulation, by means of which a converging mixed model can be established.
Consider the equation

@0

a %u
K 0x10x;
u=20

=f inQcR"

onl,

where a;; = aj; = const, fe L,(2) and the matrix [a;] is positive definite.

Applying the Friedrichs transform to the problem &(u) = min with
u .
M= gy T i=1,2,..,n, Tpi=1u,

where o € R" is an arbitrary nonzero constant vector, we derive a new variational
formulation of the problem (4.1).
DrrFNITION 4.1. Let us introduce (cf. (2.13))

Q= {il 1e[L(QF, divie L,(D)},

Wale = D Wsllo+IdivAl,,
j=1

CB(&, ) = Gk, )=y (divA— oy Ay, diva— ),
where [b] = [a]™, ¥ = ay; a;aj,
(u,v) = Suva’x.
o

‘TeeoreM 4.1. The variational problem of finding A € Q such that
4.2 B, p) =y '(f, divu—ozp;) VueQ
has a unique solution A*, where

-

x_ [0
li a‘j( 3x_y
and'n is the (weak) solution of the problem (4.1).

+cz,~u), i=1,2,...,n,
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Moreover,
= —y~HdivA*~—o; AF +1),

[#*le < Cliflo-
Let us take for simplicity a;; = dy,i.e., the equation —du =j. Sometimes,
one component of the gradient 76—, say ; , is of less interest than 'g;"’ i<n-1.
X3 1

(This may be the case if e.g. the domain Q is “thin” in the direction of x,.) Then
we can set
a, = ogh™178,

;=0 for i<n-1,

where 0 < £ < 1, g > 0, £ > 0 are some parameters, and transform the last com-
ponent of the gradient as follows:

An = Onln.
Introducing
A= (Ars eees M)y
5(113 AR zn; /‘13 “')ﬁ'ﬂ) = B(A;[“):
B ) = Bty wwos i figs -oes Fin)s

we may replace the problem (4.2) by an equivalent one:

n—1

N i F
B(l;y)=a;2(f, a—?—an ’l"+¢x..,u..),
=1

(4.3) o

n—1

. VYuegs ={#E[Lz(9)]” ﬁﬁ-—%g—eh(ﬂ)},

=1
TeQy = {le [L(DF, Z ‘”’ 4 e, ‘? eLz(Q)}

Suppose we have two families of subspaces:

(VY and {#,} with 0<h<1,0<h <1,

satisfying the following requirements:
) ¥y = WH2(Q), V,, « WE(L) Vh, h
(i) 3 integers » > 2, %, > 2and C = const such that Vo € W*2(Q)3w;, € V32

lo—o4); < CH ol ©=0,1,
Ywe Wa2(QDnWiA(Q2)Iw, € Va,:
lw—wil: < CH Wl ©=0,1,

(iii) 3C, = const such that for sufficiently small &
izl < Coh™lixlho  VizeVa.
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Denote by V(h, h,) the space
Vih, by) = V" 1 X Vy,.

We shall say that A* e V(h, h,) is a finite-element approximation of the problem
(4.3), if

-4
n—1

E(Zk’ B = w2 (f, alu.l —a Oty +OC,%,I_L,|)
— 0x; ox,

Ve Vih, hy).

TreOREM 4.2. Let the solution u belong to W™2(Q), where m > max(x+1, x,).
Then, for sufficiently small h, the finite element approximation is determined uniquely
and it holds

n—1 —

du u oAk -
P P —ax“ﬁl' *lu=Ailo
= J n n 1|0

< CE A+ 1+ b et B )|t
The proof can be found in [11].
ExaMpLE. Suppose that 2 is a polygonal domain in R? and u € W32(Q). Setting
& =1, h, = Ch and using the piecewise linear polynomials on the triangulations
Ty and J,, tespectively, we obtain » = »x, = 2 and from Theorem 4.2 we get
ou

3k
oxy 4

ou oAl
0x, 0x,

o F +lu—2Elo < Chlluls.

Remark 4.1. In the case of a smooth boundary the curved elements along the
boundary can be used for Vy, V;, (cf. [13], [14]). For the proof of convergence
see [12].

The method can be extended to elliptic systems such as those of linear plane
elastostatics. The corresponding mixed model is proposed and analyzed in [15].
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