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1

Let 2 be a bounded domain in R* (2 < n < 4) with a boundary I". We shall con-
sider several discrete time Galerkin methods for approximating solutions of the
non-stationary Navier-Stokes equation of the form

du <

1 — u=f—

) o vAu+ r=51 wDu =f—Vp, »>0,
divu =0

with the following boundary and initial conditions:
ulp =0, oo = to,

where u: O — R, p: Q » R, Q = 2% (0, T), are unknown functions and 4, ¥
denote the Laplace operator and the gradient, respectively.

The three-level discrete time Galerkin method, which results from applying
the Galerkin procedure in the space variables and using three-level finite difference
approximations in the time variable, was used in [2] to obtain an approximating
solutions of nonlinear parabolic equations. In this paper we shall prove a theorem
on the convergence of approximating solutions, obtained by two variants of the
three-level discrete time Galerkin procedure, to the exact solution of the Navier—
Stokes equation. The method of proof is very similar to that used by R. Temam
in [6] in the proof of the theorem on the convergence of the two-level discrete time
Galerkin procedure (cf. [3], [5]), which is in fact a simple modification of the method
of proving the existence theorem for the Navier—Stokes equation (see [4]).

2

We define the spaces
V ={o: ve (H}RQ)", divo = 0}
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and
H = the closure of ¥ in (Z2())",

which are Hilbert spaces with the inner products

(.80 = Zl Oife Digdirars (118 =D (i 8Dexcan,
ii= i=1

and with the norms
1A= {2 1fl = (O
respectively, for f= (fi, ..., fu) & = (g1, > &)
Define L2(0, T; X) and L=(0, T; Y) as the spaces of functions f: [0, T]— X,
g: [0, T]— Y such that the norms
. r

1z, 20 = (§ 1@l

lgllzeo, vy = esssup g )y,
tel0, T}

are finite, where X and Y are Hilbert spaces and T is a fixed positive real number.
Now we formulate the problem which will be considered below. It can be posed
as follows: for given

()] feL?Q, T; H),

(©)] up € H,

find

@ ue L*(0, T; V)nL*(0, T; H)

such that

(5) YoeV @', W)+’V((u, v))+b(u, u,9). = f,9), »>0,

® o o u(0) =,

where

) b(u,v,w) = Z S wi(Dw))w;dx  for u,v,weV.
0j=1a

The problem (2)(7) is equivalent to the following one: for given f, uo, which satisfy
(2), (3), find a_ function u on Q which satisfies (4) and (6) and a distribution p
on Q such that equation (1) is fulfilled in the weak sense (see [4]).

3

Consider a family {V,}yc of finite-dimensional subspaces of V, which satisfies
the following conditions:

® - Uv,=7,

heG
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©® s Vhi,hy €G  hy > hy =V, <V,
(10) VheGVo, e Vi<isn Dwp,el'Q),

where the set G < (0, c0) of parameters 4 has an accumulation point at 0. (An
example of such a family is described in [6].)
It is obvious that

an 3C' > OVhe GVu, e V) |w} < Cllua),
12) VheGISKH) > OV, e Vi llwll < S ()|l
(13) VheGIRH) > OVy, v, eV,

16 (s s 24)] < R(B) ] Nlunll Lol
Condition (11) follows from the definition of the norm | ||, by Poincaré’s inequality
(see for example [1]), (12) is satisfied in view of the fact that every two norms in
a finite dimensional linear space are equivalent, and (13) follows from (11), (12)
and the continuity of the functional b on VXV x V.

4
R. Temam in [6] discussed the two-level discrete time Galerkin method of the form
(149 Vo, eV

. :
(=l L, o)+ (U, o) b (Wi, e, on) = (™ 08),
k

form=1,..,N,k =T/N,
mic
= % { roa, m=1,..n,
{m—Dk
and for given ugy.
The purposé of this paper is to give a theorem on the convergence of the follow-
ing two variants of the three-level discrete time Galerkin scheme:

15 Vo, eV,
1
E @t —upet, o)+ (@, o) +b (Ui, i o) = P on),
(16) Vo, eV,

. 7
—z—k—(u;’{'i” - u;l"’;l > ‘U],) +v ((ul’rk? 2 'U;,))-f-b (u;:"k: u:’-":f, 11;,) = (fm: 7);,),

wp = Ot + (1 —20) i+ Oufic
form=1,..,N-1, k = T/N,
(m+Dk

arn = swar,
(m—Dk

=1,..
% "
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(N is a given natural even number), and for ufy, ujy defined as follows:
18) 2, is the orthogonal (L2(2))" projection of u, onto Vj,
(19) " 4l is the solution of the problem (14) with m = 1.
Using the Lax-Milgram theorem (see [1]), one can easily check that (15), (16)
are uniquely solvable,
5

Let uyx, Wik, zme be functions with values in V;, defined by

(20) ) w8 = upk,

@n wu(t) = uftt,

22) 7 T oy = ui

in all cases for te (2(i— 1)k, 2ik] and i = 1, ..., N/2,
z(2ik) = uft  for i=0,1,. .;N/2,

23) Zulr2g-nk, 210 18 @ linear function for i = 1,..., N/2,
Zy(t) =0 for ¢¢][0, 1],

where {ufk}N_oisa solutlon of the problem (15) or (16) with ufy, . given by (18)
and (19).

Now we want to derive some 4 priori estimates of solutions of (15), (16) and
to prove some lemmas, which provide a few interesting properties of functions
defined by (20)-(23) and allow us to prove the main theorem of this paper, Let us
begin from the followi\ng lemma.

LemMA 1. If {ufi YN0 is a solution of the problem (15), then there exist positive

constants Cy, C, and Cs (depending only on f, uo and ), such that for all ki and k the
following inequalities are true;

24) max |ufil*< C1 >
0<m<
feh) SR Z klufil® < Ca,
m=1
N-1 .
@6 * D7 ~ul < G
X U o m=l
Proof. If we take 9, = uji™* in (15), we obtain the equality
7 o 2 i — a2 Ao [ |2 = 4 (f, Ul

but using the Cauchy-Schwarz inequality, (11) and e-inequality we have

gy < K+ i),
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and thus

Judiet 1| — gt L2 4l — i 12 R i 12 <'—|f'"l2

Summing these expressions for m =1, ...,7—1 we get

r—1

e DI i
m=1 m=l
4C? :
<35 Slf(s)]zds'+]u,‘,’k|2+|uﬂk]2
o

forevery 1 <r < N.

From tlns mequahty and from the known bounds for uly, u}y, (see [6]), we obtain
(24), (25) and (26).

LeMMA 2. Let us assume that § > 1. If {ufi}heo is a Solution of the problem
(16), then there exist positive constants C4 and Cs such that for all h and k the follow-
ing inequalities are true:

@n max [y < Cq,
0sm<N

28) Z k2 < Cs.
m=1

If in addition

29) kS?(h) < const, kR?*(h) < const,.

then there exists a positive constant Ce such that for all h and k the followmg inequality

is true:
—1

(30) Z gy — i ? < Co.
=1

Proof. If we take the o, = ufy

(] _26){|um+1/2[2 m—l/2|2}+(6__ ){Iuh +1]2
where

in (16), we obtain-the equality.
a2y e |2 = k(™ i)

Wt = L ), gt = AU,
but using the Cauchy-Schwarz inequality, (11), e-inequality and summing for
m=1,...,r—1 we have

r—1

(0—3) (el + i 2+ (1= 20)|u;,1/2|2+~2 Kl

r—1

CkZlf’"lz (0—2) {julel?+ Il 3+ (1 - 26) it

m=1
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Now we see that the following inequality is valid
' " r—1 -

min @, 0—3) {Ml® + iz 2} + - ) Kl

m=1

! c?
< —=—

o VLIPS +O+ D (R +lub?}.

Cting

From this inequality and from the known bounds for uf;, and wk we obtain (27)
and (28).

In order to prove the boundedness of |ufitt —ufi- 1|2, we take o, =
— 1) in (16) and we write

= 4k (u"'“

2t P

= — 4k (., uht —vp )+ Ak (", gt — i *) — 4kb (upy, uhk > upe L= t).

An application of the Cauchy-Schwarz inequality, e-inequality and (12), (13) allows
us to estimate the right-hand side of this equation and to write the following in-
equality:

[ — i ' < 8v2ke*S?(h) o |12+ 8C2R2R> (h) il [ 12+ 8| ™2,

Summing these relations for m =1, ..., N—1 and using (28), (29) we get
N-—1 Vil

D~ < 82 Cy kS (R)+8C7Ca Cs kR () +8T § [f(s)/2ds.
m=1 0

Hence the required result follows.

Following [4] and [6], let us define for 0 < y < 1/4 the Hilbert space #7(R;
V, H) as the space of functions v € L>(R; V) such that D}v belongs to L2(R; H),
where DY denotes the derivative in ¢ of order y of v, defined by the formula

—T A
Dl (z) = Qmit)'? (1)
(f denotes the Fourier transform of iRV

The norm in 57(R; ¥, H) is defined by
=1 KRV, = {Ilﬂllﬁﬂ(k;r')"’ i [TIV% "?;’(R} H)}“z'

Now we are able to state the next lemma.

LemMA 3. If the furictions zy: R — V;, are-defined by (23) with {up N0 given
by (15) (or by (16)), then the family zy, forms a bounded set in the Hilbert space
H#Y(R; V, H).

;-Proof. See [6], pp..275-277 and [4], pp. 77-79, where the method which can
be used to prove this lemma is described in all details.
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6

Now we can summarize the results of this paper in the following theorem.

THEOREM 1. Let us assume that 2 < n < 4 and that we have a sequence of par-
ameters {(h, k)} such that h~ 0, k — 0. If u is a solution’ of the problem (2)~(6) and
if {ufi} M=o is a family of solutions of the problem (15), (18), (19) for all natural even
numbers N and all h € G, then there exists a subsequence {(K',k")} of {(h,Kk)} such
that for functions uy, defined by (20) the following convergence results are frue:

@31 Uy — u weakly* in L*(0, T; H),
(32) Uy — u strongly in L*(0, T; H),
(33) - wyw > u weakly in L2(0, T; V),

for k' — 0, k' = 0.

Proof. The definitions (20), (21), (23) of functions uu, Wi, Zu yield the equa-
tion -
(34) Vo, eV,

g[(z”‘(t)’ ‘vh)-H’ ((Uhk(f), Wh))"f‘b (th(l), i (t), Uy) = (fk(t), ¥p)

a

for te(0,T), where fi(t) =f2~1 for te (2(j— Dk, 2k} and j=1,...,N/2.
1t follows immediately from Lemma 1 that the family of functions u; formsa bound-
ed set both in L2(0, T; V) and in L*(0, T; H), and thus there exists a subsequence
{(', KN} of {(h,K)} such that

(35 uyyw — u weakly in L2(0, T3 V),
(36) wyy — u weakly in L®(0, T; H),
37 uyy — u weakly in L2(0, T; H),

with some u € L2(0, T; V)nL=(0, T; H).

Lemma 3 implies that the family of functions z forms a bounded set in the
space #7(R; V, H) and thus, by the compactness theorem (see [4], pp. 61-62 and
(6], pp. 215-220), there exists a subsequence {(A’,k")} of {(k, k)} such that

zZyw — z strongly in L2(0, T; H),
for some z € L2(0, T'; H).
Since wp—2zn — 0 and uy,— Wy — O strongly in LZ(O T; H), it is easy to see

that

(38) wyw = u strongly in L2(0, T; H),
(39) zZyr — u strongly in L2(0, T; H),

(40) . wyp — u strongly in L*Q0, T; H).

It can be also checked (in the same fashion as in [6], p. 284), that
(41) fi = f strongly in L2(0, T; H), with k~ 0.

Now we are able to pass to the limit in (34) with A, k' - 0 in the sense of con-
vergence in D'(0, T). Using (35), (38)~(41) and (9) we see that for all ko € G and all
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test functions ¢ e D(0, T), the following results are true:
T T

{2 o, 0ot = — § @@, m)o O
(1] 0

bl

T
S ((uh‘:k'(t)s ‘Uhg))¢ (t)dt —» S ((uh'k’(t): o, ) ()dt,
o

0

T T
S (o), o9 (1)dt > S (f@), v )p (t)t.

It is known (see [4], p. 73), that wyp, styw,y — Wiy weakly in LZ(O T; LY*(Q))
for p = 1/2—1/2n.
An application of this fact and of assumption (10) yields the convergence
T T

S B (e (0), twie (1) O, Y (1)l — S b(u)pu(), vy, )p(t)dt.
) 0

This implies that u occurring in (35), (36), (38) satisfies condition (5). It can be
checked by the method used in [4] and [6] that u satisfies also condition (6).
Thus we can conclude that conditions (31)-(33) are satisfied for the weak solution
u of the Navier-Stokes equation.

THEOREM 2. Let us assume that 2 < n < 4 and that we have 0 > } and a sequence
of parameters {(k, k)} satisfying the conditions (29) and such that h - 0, k — 0.

If u is a solution of the problem (2)-(6) and {ujp}¥_o is a family of solutions
of the problem (16), (18), (19) for all natural even numbers N and all h € G, then there
exists a subsequence {(', k)} of {(h, k)} such that for functions wy, defined by (20)
the convergence results (31)-(33) are true.

The theorem is proved in the same way as Theorem 1 (we must only replace
(20) by (22) and use Lemma 2 instead of Lemma 1),
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PEIIEHHE TU®OEPEHIHAJIBHBIX YPABHEHUIA
NAPABOJIMYECKOT'O THIIA METOJOM
KOHEYHBIX 3JIEMEHTOB

AJIO#A3 HEMETEI

Viuusepcumem um. Komenckozo, Hucmumym IIpuxaadroii Mamesamuru 4 Beruucaumenvrioti
Texnuxu, Bpamucaasa, Yexocsoeaxusn

1. Beenenne

B nacrosiell paGoTe METOX KOHEUHBIX 3JIEMEHTOB IPHMMEHSCTCS B PEIUEHMM CMC-
mamHOR sajauM IS mapabormueckux AuddepeHIMANTEHEX YpaBHEeHMIl ¢ JacT-
HEIME TIPOM3BOJMBIME 2-F0 TOPSIKA — B ypaBHEHMM Temionposopeoctd. Kax
M TIpu pemieryE npoGiem JmHEEHHOR BasKoynpyrocta [4, 5, 6, 7], Tax ¥ B JAHHOM
ClIydyae MOMKHO TPMMEHMTH npeobpasoBanpe Jlaruraca M IIOTOM peIlarh IPACOE/H-
HEHHYIO KP2eBYI0 33/layy METOXOM KOHEUHBIX 3JIEMEHTOB.

O6patnoe npeoGpasoranue Jlannaca ABIETCA OYCHD CIIOMKHBIM ¥ €r0 MOXHO
OTpENENATh TOJBKO UHCIEHHBM IyTeM. Xapakrep OOPATHOIO IIPeo0pasOBaHms
BHEH W3 DasiOoyKEHMs MPUCOETIHEHHON0 PEMICHNS Ha YaCTHBIE NpolH, HO Mpak-
THUECK T UHMCIEHHOTO PeleH s IPEMEHEHNE STOr0 METOXA HEBOSMOXKHO. B jrar-
HOM CJIyuae TIOXOSIIUM UHCTEHHBIM METOHOM JJIs ONpe/IeNerust 0fpaTHoro mpe-
obpasoBanus Jlamnaca SIBJIAETCS METOJ PAsNOYKEHHS MCKOMOTO' PEIICHMA B PN
Huprxne.

2. dopMyTHPOBKA MPOOAEMBI

Tlycrs 2 — orpamaerHas obnacts, 2 < E,, TAe E, NPE/ICTaBIsAET IByMEpHOE
SBIUTMIOBO NMpOCTpancTBo. Ilycts § rpammma ofmactd (2. YpaBHEHHE TEIJIONpPO-
BOMHOCTH TIPHMET BUL

2 2
@ 3D a0 g = £,

i=1 k=1

rae X = (%1,%5), au(X), i,k = 1,2 ynonerBopsmor muf X €{2 HepaBeHCTBY
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